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ABSTRACT 

As a representative advanced imaging technique, the digital image correlation (DIC) 

method has been well established and widely used for deformation measurements in 

experimental mechanics. This methodology, both 2D and 3D, provides qualitative and 

quantitative information regarding the specimen’s non-uniform deformation response. Its 

full-field capabilities and non-contacting approach are especially advantageous when 

applied to heterogeneous material systems such as fiber-reinforced composites and 

integrated chip (IC) packages.  

To increase understanding of damage evolution in advanced composite material 

systems, a series of large deflection bending-compression experiments and model 

predictions have been performed for a woven glass-epoxy composite material system. 

Stereo digital image correlation has been integrated with a compression-bending 

mechanical loading system to simultaneously quantify full-field deformations along the 

length of the specimen. Specifically, the integrated system is employed to experimentally 

study the highly non-uniform full-field strain fields on both compression and tension 

surfaces of the heterogeneous specimen undergoing compression-bending loading. 

Theoretical developments employing both small and large deformation models are 

performed. Results show (a) that the Euler–Bernoulli beam theory for small deformations 

is adequate to describe the shape and deformations when the axial and transverse 

displacement are quite small, (b) that a modified Drucker’s equation effectively extends 

the theoretical predictions to the large deformation region, providing an accurate estimate 
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for the buckling load, the post-buckling axial load-axial displacement response of the 

specimen and the axial strain along the beam centerline, even in the presence of observed 

anticlastic (double) specimen curvature near mid-length for all fiber angles (that is not 

modeled), (c) for the first time show that the quantities σeff - εeff are linearly related on 

both the compression and tension surfaces of a beam-compression specimen in the range 

0 ≤ εeff < 0.005 as the specimen undergoes combined bending-compression loading. In 

addition, computational studies also show the consistency with the experimental σeff - εeff 

results on both surfaces. 

In a separate set of studies, SEM-based imaging at high magnification is used with 

2D-DIC to measure thermal deformations at the nano-scale on cross-sections of IC 

package to improve understanding of the highly heterogeneous nature of the 

deformations in IC chips. Full-field thermal deformation experiments on different 

materials within an IC chip cross-section have been successfully obtained for areas from 

50x50 μm2 to 10x10 μm2 and at temperatures from RT to ≈ 200oC using images obtained 

with a Zeiss Ultraplus Thermal Field Emission SEM. Initially, polishing methods for 

heterogeneous electronic packages containing silicon, Cu bump, WPR layer, substrate 

and FLI (First level interconnect) were evaluated with the goal of achieving sub-micron 

surface flatness. Studies have shown that surface flatness of 700nm is achievable, though 

this level is unacceptable when using e-beam photolithography for nanoscale patterning. 

Fortunately, a novel self-assembly technique was identified and used to obtain a dense, 

randomly isotropic, high contrast pattern over the surface of the entire heterogeneous 

region on an IC package for SEM imaging and DIC. Experiments performed on baseline 

materials for temperatures in the range 25°C to 200°C demonstrates that the complete 
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process is effective for quantifying the thermal coefficient of expansion for nickel, 

aluminum and brass. The experiments on IC cross-sections were performed when 

viewing 25μm x 25μm areas and correcting image distortions using software developed 

at USC. The results clearly show the heterogeneous nature of the specimen surface and 

non-uniform strain field across the complex material constituents for temperatures 

ranging from RT to 200°C. Experimental results confirm that the method is capable of 

measuring local thermal expansion in selected regions, improving our understanding of 

these heterogeneous material systems under controlled thermal-environmental conditions. 
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CHAPTER 1 

Damage Evolution Studies for Large Deformation of Woven Composite Specimen 
under Combined Bending-Compression Loading 

1.1 Introduction 

Fiber-reinforced composite materials have been used over the past few decades in a 

variety of structures, and are increasingly being used in woven form in a variety of 

industrial applications, such as aerospace and automotive systems. The growth of 

applications employing woven composite materials is due to desirable characteristics, 

such as high ratio of stiffness and strength to weight, long fatigue life, electromechanical 

corrosion resistance and magnetic transparency. Although woven composite materials 

have many advantages, they oftentimes exhibit strong anisotropic mechanical behavior 

due to their fiber orientations, inducing non-uniformity in the strain distribution and 

activation of a variety of local damage mechanisms. Understanding the relationship 

between fiber orientation, progressive damage and the corresponding deformation fields 

is essential when employing such materials in safety critical applications. This is 

especially true for situations where woven composites exhibit highly nonlinear behavior 

under certain loading modes, especially large amplitude deformation. In such cases, the 

evolution of damage and the relationship of damage to the macroscopic strain field are of 

interest, requiring that full-field deformations be quantified so that the presence of non-

uniformity in the strain distribution can be identified and used to develop appropriate 

failure criteria. 
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Unfortunately, a large number of practical problems that employ composite 

structures require nonlinear formulations to describe their response (e.g., post-buckling 

behavior, load carrying capacity of structures, deformation response). There are two 

common sources of nonlinearity: geometric nonlinearity and material nonlinearity. 

Geometric nonlinearity arises purely from geometric considerations (e.g. nonlinear strain-

displacement relations), whereas the material nonlinearity is due to nonlinear constitutive 

behavior of the material system. A third type of nonlinearity may arise due to changing 

initial conditions or boundary conditions.  

Given the complexity of advance composite material systems, there have been a 

number of experimental and theoretical studies of composite materials to describe the 

nonlinear stress-strain relationship. Hahn and Tsai [1] employed a complementary elastic 

energy density function which contained a biquadratic term for in-plane shear stress. The 

nonlinear stress–strain relation in simple longitudinal and transverse extensions under 

off-axis loading was predicted. Assuming that fibers are linearly elastic, Sun [2] modeled 

the composite by employing nonlinear matrix layers alternating with effective linearly 

elastic fibrous layers. A number of plasticity models also have been used to describe the 

non-linear behavior of fiber-reinforced composite materials. Some researchers have used 

micromechanics approaches to establish stress/strain relationships [3-4], while others 

have studied non-linearity at the structural level [5-12]. Among the structural approaches, 

the work by Sun and Chen [7, 11] is particularly impressive because of the simplicity and 

accuracy of their model. They developed a one-parameter plasticity model to describe the 

nonlinear behavior of unidirectional composites [11, 12], based on a quadratic plastic 

potential and the assumption that there is no plastic deformation in the fiber direction, 
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and then generalized it for laminates [13, 14]. Then, Tamuzes extended the study to 

describe the response of a symmetrical cross-ply composites with nonlinearity in on-axis 

loading caused by intralaminar matrix cracking [15] and orthotropic woven glass-epoxy 

composite laminates reinforced by satin woven glass fiber cloth and having different 

tensile properties in the 0◦ and 90◦ directions [16]. Varizi et al. [17] also suggested a 

plasticity model for bidirectional composite laminates. However, it requires knowledge of 

the axial and shear yield strengths, which can be difficult to define and to obtain 

experimentally for composite materials. Odegard et al. [18] suggested a very simple 

plasticity model only for woven graphite/PMR-15 composite. Recently, Reifsnider and 

his group [19-21] developed a theoretical framework resulting in a single equation for 

predicting the nonlinear behavior of thin woven composites. Pollock et al [22] then used 

the theoretical construct and demonstrated that it was effective in predicting the response 

of a thin woven composite specimen subjected to tensile loading. 

Though compression and tension experiments have been used in the study of 

composite material systems, bending and/or bending-compression experiments have been 

investigated by only a few authors. Wisnom [23, 24] reported that very high strains of 

about 2.5% were measured on the compression surface with no significant damage on 

unidirectional carbon-fiber/epoxy, with a consequence of non-linear stress-strain 

behavior in the fiber direction. Whitney [25] showed that engineering bending theory can 

give rise to errors if there is any non-linearity in the stress-strain response of the material, 

or if large displacements occur. Yang [26] reported results from a series of bending 

experiments and indicated that the through-the-thickness stitching increased the 

delamination resistance and lowered the bending strength of the composites. Paepegem 
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[27] showed that composite bending tests yield important additional information that 

cannot be recovered from the conventional tension tests, noting that uniaxial tension 

experiments mainly focuses on in-plane characteristics, while laminate composites are 

actually more sensitive to out-of-plane loading in real applications and are oftentimes 

weaker in the through-the-thickness direction than in the plane of lamination. Thus, 

results from bending-compression experiments provide quantitative information 

regarding both tension and compression effects on damage in composites. Furthermore, 

such experiments offer investigators the ability to subject thin specimens to large, out-of-

plane displacements so that the failure process caused by large local deformation can be 

investigated. 

Although most bending experiments on woven composites have used strain gages to 

monitor local strain as a function of end load [28, 29], the size of the strain gauge has 

several disadvantages; (a) only a few gauges can be placed on the specimen, (b) it is not 

always easy to determine the right position since the highest strain is not necessarily at 

the center of the woven composite strip because large shear deformations may cause 

asymmetry [30], (c) with only a few points available for assessing local strain gradients it 

is difficult to quantify how strains vary across the width and along the length of a 

specimen and (d) for bending studies with large displacement gradients or high curvature 

in deformations, strain gages oftentimes will de-bond from the surface. For example, 

while previous work shows increasing compressive strain with increasing strain gradient 

[30], the ability to quantify this observation using point-data is uncertain. Because of 

these issues, there is a paucity of systematic investigations of the nonlinear stress–strain 

behavior in woven glass/epoxy laminates under bending compression load, resulting in 
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relatively little experimental data regarding the response of woven glass/epoxy 

composites undergoing bending load for comparison to the predictions of various 

analytical models.  

An approach that overcomes the difficulties noted above for compression-bending 

studies of composite (or metallic) specimens is stereo digital image correlation, a 

relatively well established methodology in modern experimental studies [31-39]. Digital 

image correlation (DIC), both 2D and 3D, provide both qualitative and quantitative 

information regarding the heterogeneity of the specimen’s deformation response. Its full-

field capabilities and non-contacting approach are especially advantageous when applied 

to heterogeneous material systems such as fiber-reinforced composites, where the effects 

of fiber orientation and local damage are clearly evident in the measured response. 

Specifically, 2D DIC has been shown to be effective in both tension and in-plane shear 

experiments for fiber reinforced composites [40, 41]. In our bending-compression test, 

3D DIC was used to monitor the large out-of-plane displacement fields and the full-field 

surface strain distributions on both the tension and compression surfaces since it has been 

shown that 2D DIC measurements will be ineffective in the presence of large out of plane 

motion [42]. 

With regard to simulation studies, relevant previous work includes the numerical 

model for layered composite structures based on a geometrical nonlinear shell theory 

developed by Guttmann, et al, [43]. Of particular note is the work of Lomov et al [44] 

where the authors used digital image correlation to quantify surface deformations in 

woven composites as part of a broader effort to develop validated software capable of 

identifying both the meso-scale (fiber bundle scale)  as well as the macroscale response 
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of the woven composite system. All experiments were tensile loading with relatively 

small strains (<2%). The orthogonal weave was oriented either along load direction or at 

45o  to the loading axis, with good agreement demonstrated between FE simulations and 

experimental evidence for the tensile loading application. In thin-walled open-sections 

beams made of fiber-reinforced laminates, at which the bending and torsion are coupled, 

a nonlinear finite element analysis based on the updated Lagrangian formulation was 

developed by Omidvar and Ghorbanpoor [45] to solve the problem numerically. 

Krawczyk, et al [46] developed a layer-wise beam model for geometric nonlinear finite 

element analysis of laminated beams with partial layer interaction. The model was built 

assuming first order shear deformation theory at the layer level and moderate interlayer 

slips [46]. Jun, et.al [47] developed the exact dynamic stiffness matrix for a uniform 

laminated composite beam based on trigonometric shear deformation theory. Reddy [48] 

deduced a nonlinear formulation of straight isotropic beam using Euler Bernoulli beam 

theory and Timoshenko beam theory to formulate the kinematic behavior of the beam. 

The principle of virtual displacement was used to formulate the equilibrium equations.  

Most stability studies for composite laminated plates have focused on geometrically 

nonlinear analysis while research on the effect of nonlinear effective constitutive material 

properties on composite behavior has been very limited. For example, previous studies 

indicate that nonlinearity in the in-plane shear is significant for composite materials [49]. 

Regarding non-linear composite constitutive properties, a few attempts have been made 

to study buckling of thin composite laminate panels and post-buckling of thick section 

composite laminate plate. Hu [50] investigated the influence of in-plane shear 

nonlinearity on buckling and post-buckling responses on composite plates under uniaxial 
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compression and bi-axial compression and of shells under compression. The effect of 

material nonlinearity on buckling and post-buckling of fiber composite laminate plates 

and shells subjected to general mechanical loading, together with the interaction between 

the material and geometric nonlinearity also was investigated by Hu et al [50]. It was 

concluded that composite material nonlinearity has a significant effect on geometric 

nonlinearity, structural buckling load, post-buckling structural stiffness, and structural 

failure mode shape of composite laminate plates and shells. 

Since studies employing combined bending-compressive loading conditions have 

been very limited in the literature, one objective of the current work is to develop a 

controlled compression-out-of-plane bending experimentation and full-field deformation 

measurement method and apply the approach using small plate specimens undergoing 

large axial displacements and out-of-plane deformation. The results from bending-

compression experiments have been shown to provide additional quantitative information 

regarding both tension and compression effects on the behavior of thin woven composites. 

Details regarding the experimental system and the woven composite specimens used in 

this study are presented, along with a discussion of the key aspects in the system in 

Section II. Section III presents the experimental results and an extended discussion of the 

results. Meanwhile, since both small and large elastic deflection conditions are of interest, 

corresponding to classical beam theory and a slightly modified formulation based on 

Drucker’s [51] large deflection theory (which accounts for the shortening of the moment 

arm as the loaded end of the beam deflects), respectively, modeling results are reported 

for both cases. The non-linear equations obtained from Drucker’s modified formulation 

are solved using elliptical integrals to evaluate the relationship between the end 
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compression load and specimen deformation. The predicted response using this model is 

compared to experimental data obtained in Section IV. Finally, the author extend the 

concepts proposed by Reifsnider and his collaborators [19-21] to describe the behavior of 

thin composite materials subjected to other loading conditions (e.g., compression and/or 

bending). In Section V, using results from the various models, effective stress and 

effective strain have been introduced to determine whether they are appropriate 

parameters for correlation of woven composite specimen response at all fiber angles. 

Section VI provides concluding remarks. 

 

1.2 Specimen and Experimental Consideration 

1.2.1 Composite Specimens and Preliminary Studies 

The present work employs Norplex Mylar NP 1301, a composite material composed 

of an orthogonal 0/90° plane weave glass fabric embedded in a halogenated epoxy resin. 

As shown in Figure 1.1, the glass fibers are configured in six laminas. The weave length 

                                                           
1 Commonly used as a structural material in computer chips.  

Figure 1.1: Edge view of specimen 
 1mm 

Six laminas 
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(from peak to peak) is 1mm, which approaches the total thickness in size. All specimens 

were extracted from a 600mm by 600mm by 1 mm sheet (see Figure 1.2). Each specimen 

size was 12.7 mm wide and 101.6 mm long. Specimen orientation was along one of seven 

different directions, θ = 0o, 15o, 30o, 45o, 60 o, 75o and 90o, which corresponds to fiber 

angles (0o/90o), (15o/−75o), (30o/−60o), (45o/−45o), (60o/-30o), (75o/-15o) and (90o/0o), 

respectively. 

 
Figure 1.3 shows a composite specimen and also a patterned specimen surface 

prepared for digital image correlation. High contrast speckle patterns were applied using 

a thin coat of white enamel paint and a diffuse overspray of black enamel so that the 

appropriately patterned specimen surface can be used effectively in 3D-DIC to obtain 

out-of-plane deformations and surface strains throughout the region of interest.  

 Preliminary monotonic tensile tests to failure were performed to obtain basic 

material property data using an MTS 810 50kip hydraulic test frame with hydraulic 

platen grips. Stereo digital image correlation [52] was used to measure the surface strain 

during each experiment. For each fiber orientation, the results were averaged from three 

experiments. The final stress-strain curves are shown in Figure 1.4.  

Figure 1.3: Specimen with applied random 
pattern for 3D digital image correlation. Figure 1.2: Composite plate 
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Table 1.1 presents the as-measured elastic moduli for fiber orientations θ = 0o, 15o, 

30o, 45o, 60o and 90o. The data in Figure 1.4 is consistent with previous work from Dr. K. 

Reifsnider’s group [19-21].  

To determine the orthotropic elastic engineering constants, only the linear parts of 

the stress-strain relationship are used. Details regarding the optimization procedures used 

to obtain the composite properties were recently reported in the literature [22]. The 

θ (o) 0o 15o 30o 45o 60o 90o 

Eθ(GPa) 25.9 23.5 16.8 14.6 16.5 23.2 

E1 (GPa) E2 (GPa) G12(GPa) ν12 ν21 

26.2 23.2 5.1 0.15 0.13 

Table 1.1: Longitudinal Young's Modulus, Eθ, determined by 
linear regression using σxx – εxx data for individual specimen 

  

Table 1.2: Primary Elastic Properties for Orthotropic Composite 

 

   

Figure 1.4: The stress–strain curves for specimens cut in six directions. 
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orthotropic composite elastic properties obtained using a non-linear least squares 

approach are shown in Table 1.2.  

1.2.2 Compression-Bending Loading Systems 

A schematic of the compression-bending specimen and the loading process is shown 

in Figure 1.5. All specimens were initially placed in a Tinius Olsen TI-5000 electro-

mechanical load frame in a nominally straight configuration. Compressive load, P, axial 

displacement, Δ, out-of-plane offset from axial centerline, δ, are the primary parameters 

for our studies.  

 

To perform combined bending-compression loading of specimens such as those 

shown in Figure 1.3 while simultaneously acquiring stereo images of both sides of the 

specimen, an integrated experimental set-up was designed that includes the loading 

fixture, loading machine and two independent stereovision system. Figure 1.6 shows the 

complete experimental system, including stereovision systems and loading grips.  

Figure 1.5: Schematic of compression 
bending specimen, with load, P, offset, 
δ, and axial displacement Δ. 
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The Tinius Olsen 5000 (TI-5000) electromechanical test frame (item 6 in Figure 1.6) 

was modified for use in our studies.  The grip speed of TI-5000 is 0.25~500mm/min with 

different displacement resolution, depending on the required displacement resolution. 

 

The accuracy of the displacement sensor is 0.0063mm for grip speeds < 

12.5mm/min, which is the range used in our experiments. The maximum force capacity is 

22.25kN with resolution 0.67N. This accuracy is unacceptable for our experiments, 

where the maximum load is typically less than 35N. To overcome this limitation, a high 

accuracy load cell (Honeywell Model 102, S-shaped design) was integrated into the 

loading frame. The load range is +/-196N with 0.04N resolution. The load cell is shown 

as an inset in the top left corner of Figure 1.6. 

Figure 1.6: Integrated compression-bending loading frame with dual stereo-vision 
systems. 0 and 1: Stereo system viewing compression (tension) surface; 2 and 3: 
Stereo system viewing tension (compression) surface; 4 and 5; Stiffened stereo-
camera holding device; 6: Tinius Olsen 5000 loading frame; 7 Light sources; 8: 
Stiffened platens connecting TI-5000 to specimen grips; upper-left: Precision load 
cell; bottom-left: End grips with free out-of-plane rotation and arbitrary load offset. 
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Given the relatively small mechanical loading that will be applied to the specimens 

during either monotonic loading to failure or during cyclic loading to a pre-specified 

maximum axial displacement, an end grip was designed to provide well defined end 

conditions (see Figure 1.7) First, a needle roller bearing was integrated into the grip to 

allow free out-of-plane rotation of the specimen during bending to simplify analysis of 

the specimen and ensure the central location along the length corresponds to the 

maximum moment location (e.g. approximates the critical location) during both 

monotonic and cyclic loading. Second, the specimen was positioned in the grip using two 

small screws and various shim thickness to provide an offset that resulted in a small 

applied bending moment to minimize specimen buckling effects. Third, the grip was 

machined to include an inclined plane so that the large bending deflections incurred 

under monotonic loading would not be restricted by the grip shape; out-of-plane end 

rotations larger than 90º were obtained for some fiber orientations. Finally, the small 

gripping section of the fixture was manufactured from brass with minimum mass to 

Figure 1.7: Specimen Grip Design 

Inclined Plane 

Needle Roller Bearing 

Screw for offset 
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reduce the moment of inertia and limit its effect during planned future higher frequency 

fatigue experiments. 

Results from preliminary compression-bending experiments confirmed that the 

compressive load reaches a relatively constant, low value for Δ > 0.25mm, resulting in 

instability when performing experiments in load control (which is preferred for use in 

future modeling studies). To deal with this issue, an external, software-hardware system 

was developed and interfaced with the TI-5000 for performing low load, large 

displacement bending/compression experiments. Specifically, the investigators developed 

the control system so that control can be readily shifted from displacement to load during 

the experiment, providing a stable platform for experimental studies while also ensuring 

that load control is possible in those regions (e.g., nominally elastic) where possible. 

To perform the loading process in a manner that allows control of (a) axial 

displacement, Δ, of the specimen and/or (b) axial load, P, of the specimen and (c) 

acquisition of simultaneous images from all four cameras at a pre-specified combination 

of Δ and P. the entire TI5000 control system was analyzed, modified to meet our 

requirements and then controlled using a National Instruments (NI) LabView software 

(Version 8.2) program. The program was written to automate the mechanical loading and 

data storage procedures. Figure 1.8 provides a flow chart for the automation process. In 

this work, NI device BNC adapter 2110 was used for analog input, analog output and 

trigger/counter functions. The NI data acquisition (DAQ) device PCI-6023E was used for 

high-performance multifunction analog, digital, and timing I/O. The investigators 
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manufactured custom-made serial cable (a 9 pin to 25 pin cable for output/input of data 

from various channels) and used the cable for all communication with the TI-5000.2  

 

1.2.3 Four-camera Stereo-vision System 

Since the combined compression-bending studies will result in large out-of-plane 

motion and substantial in-plane strains, a dual stereo-imaging system with 3D Digital 

Image Correlation (3D-DIC) is employed to accurately and simultaneously measure 

surface deformations on both surfaces during the loading process. Figure 1.6 shows the 

two complete stereo vision systems in the configuration used for our studies. Table 1.3 

summarizes the specifications for the system.  

                                                           
2 A Q-basic program was used to evaluate the input/output process. The configuration of 
the handshake signal was determined to be "COM1:9600,N,8", with a maximum refresh 
rate for each signal of 20 milliseconds. 

Figure 1.8: Flow chart for Labview program controlling all I/O functions for TI-5000 
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Table 1.3: Specifications for Stereovision Systems 

Camera Types Point Grey (compression side) Q-Imaging (tensile side) 

Pixel resolution 2448x2048 1360x1036 

Lens focal length 55mm 55mm 

Nominal optical F# 22 22 

Object resolution 

(square pixels) 
32.3 pixels/mm 18.2 pixels/mm 

Distance to specimen 0.4m 0.4m 

Synchronization3 1μs 1μs 

Since the two stereo-vision systems are viewing separate surfaces of the specimen, 

there are several issues that require discussion including (a) lighting, (b) depth of field 

and field of view, (c) mounting system and camera positioning (d) specimen patterning 

for large out-of-plane displacement, (e) calibration, and (f) measurements.  

Lighting 

First, lighting for each stereovision system is provided by at least two halogen lamps. 

As shown in Figure 1.6, the halogen lights are located at least 1m from the specimen. To 

minimize heating of the specimens, a robust IR filter is used for each halogen light4 . 

Each set of cameras is mounted firmly to a cross-beam to minimize vibration throughout 

the experiment. 

Depth of field and field of view 

Since preliminary experiments indicated that out-of-plane displacements up to 

40mm will occur during the bending/compression experiment for the 45o/45o fiber 

orientation, the combination of (a) required depth of field (DOF) and (b) the relatively 

                                                           
3 Synchronization was performed using VICSnap software (2009) and splitter hardware27 

4  Modern LED light systems or fiber optic light sources are recommended as a 
replacement for halogen lights, since the IR filters can overheat and fail during extended 
operation. 



17 

close camera positioning required to obtain high resolution images for strain field 

determination across the width of the specimen necessitated an analysis of both the depth 

of field (DOF) and field of view (FOV) prior to performing experiments. Using the 

procedure outlined in [39], with the tabulated specifications in Table 1.3 and an assumed 

10μm spot size, DOF ≈ 24mm. For an object distance of 0.40m, focal length of 0.055m 

and a CCD sensor size of 0.0127m, the angle of view is ≈ 13.2o and FOV ≈ 90mm by 

90mm. Based on this information, and the geometry of the specimen it is clear that (a) 

approximately one-half of the specimen length can be imaged by both stereo-vision 

systems and (b) there may be slight blurring of the specimen at maximum displacement 

in the central region where displacements are largest during bending. 

Camera Positioning and Orientation 

To optimize the positions of the two stereo-vision systems, a modified version of the 

procedure outlined by Sutton et al [53] is employed. In the bending-compression 

experiment, the compression side of specimen moves away from cameras and the tension 

side moves toward cameras, So the investigators performed a preliminary experiment 

where (a) the compression side camera system is placed as close to the undeformed 

specimen as possible while maintaining reasonable focus and (b) the tensile side camera 

system is placed as far from the undeformed specimen as possible while maintaining 

adequate focus. Results from a series of out-of-plane translation experiments ranging 

from 0mm to 40mm confirmed that the images on both sides of the specimen were 

sufficiently focused throughout the experiment and image correlation was performed 

successfully, with strain variability consistent with previous, well-focused experiments. 

As a result, this procedure was used to set up the stereo-vision systems for all 
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experiments. The as-constructed imaging configuration deviated slightly from previous 

theoretical estimation, resulting in a FOV of 75mm by 60mm, which extends beyond the 

specimen mid-span and hence is adequate for our studies. 

With regard to the specimen region being viewed, it is noted that the axial 

displacement, Δ, on one end of the specimen ranges up to 90mm during monotonic 

compression-bending loading. To eliminate this issue, stereo-imaging on both the 

compression and tension sides of the specimen was performed on the lower one-half of 

the specimen where the grip is stationary. 

Finally, preliminary experiments confirmed that the compression-bending process 

resulted in out-of-plane specimen rotations that approached 90o at the stationary end. To 

ensure that image correlation could be performed along most of the specimen length, both 

Figure 1.9: Schematic of positioning and orientation of stereovision systems for 
compression-bending composite specimen experiments. Compression (tension) 
side vision system rotated counterclockwise by ≈20o, moved closer (further) 
from specimen and translated vertically upward (downward) by ≈ 20mm.  
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stereo-vision systems were initially configured as shown in Figure 1.9. By orienting and 

positioning the systems as shown, the deleterious effects of subset foreshortening due to 

rotation were minimized and image correlation could be performed successfully for the 

entire FOV on the specimen. 

Speckle Patterning 

Regarding speckle patterning, as noted in a recent publication [39] oversampling 

requires that each speckle be sampled by at least 3x3 pixels for optimal accuracy. Thus, 

the minimum speckle sizes would be ≈ 0.2mm on the tension side and ≈ 0.11mm on the 

compression side. However, due to the presence of large out-of-plane displacements, 

images of the speckles will decrease (increase) substantially on the compression (tension) 

sides. In our studies, a slightly larger speckle size was used to ensure oversampling of 

each speckle throughout the experiment. To apply the speckle pattern, an airbrush with 

0.5mm needle is used to spray a relatively homogeneous spot pattern spot. By moving the 

specimen closer (further) from the nozzle, a larger (smaller) pattern is generated on the 

compression (tension) surfaces of the specimen. Here, the as-produced average speckle 

sizes are 0.4mm (0.3mm) on the compression (tension) surfaces. Figure 1.3 shows a 

typical speckle pattern produced on the compression side of the specimen. 

Calibration 

Stereo-vision calibration was performed simultaneously for both systems using the 

procedures described in previous publications [39, Chapter 7.2; 29]. Briefly, a specially-

designed planar target is manufactured with through-thickness circular white cylindrical 

markers embedded in an orthogonal array within a nominally black plate having a 

constant thickness, t +/- 10μm. After positioning both systems as shown in Figure 1.9, 
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images of the translated and rotated target are acquired simultaneously by both 

stereovision systems. Each system is then calibrated using images from separate sides of 

the target. Finally, the calibrated imaging systems are then converted to a common 

orthogonal coordinate system by relating “specimen coordinate systems” defined for each 

stereovision system and the known target thickness. The common orthogonal coordinate 

system used for all measurements is shown in Figure 1.10.  

 

 

 

Figure 1.10: Side view and perspective view of composite specimen with common 
Cartesian coordinate system. The X coordinate is along specimen length; Y 
coordinate is measured from specimen centerline in the width direction. The Z 
coordinate is in the thickness direction.  
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Measurements 

During the experiments, stereo imaging was used to obtain the following full-field 

data at selected loads and axial displacements (a) 3D object displacement components, (u, 

v, w) in the X, Y and Z directions, respectively, and (b) in-plane strain data (εxx, εyy, εxy). 

Unless otherwise noted, a 31x31 pixel subset size with a subset spacing of 10 pixels is 

used in all analyses. According to object resolution in Table 1.3, the physical subset size 

is about 1mm and 1.5mm corresponding to the compression side and tension side, 

respectively, which is similar to the weave length (see Figure 1.1). Strain data was 

extracted from the displacement measurements using procedures described previously 

[39, 52, 53]. Briefly, all displacement components (u, v, w), are converted to a global 

coordinates system located at the original position in the reference configuration (see 

Figure 1.10) to obtain 3D displacement fields. Partial derivatives of the displacement 

field are computed from a quadratic polynomial least square fit to the computed 

displacement field in a local neighborhood; in this study a 5x5 set of displacement data is 

used to determine the quadratic best fit for each displacement component. The 

Lagrangian strain tensor is defined at the center of the polynomial fit in terms of the 

gradients of the displacement vector components [39]. The preliminary results show that, 

after calibration, the range of strain values is less than ±200 microstrain. 

 

1.3 Experimental Results 

1.3.1 Axial Load and Centerline Moments vs. Axial Displacement 

A series of monotonic bending-compression experiments were performed on 

composite specimens with various fiber orientations. All experiments were performed 
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with sinusoidal actuation controlled automatically by the Labview program, which keeps 

the overall average speed constant at 0.21mm/sec (0.5in/min); the maximum 

displacement rate does not exceed 0.33mm/sec. 

 

Figure 1.11: Load versus axial displacement; (Top) up to 80 mm; 
(Bottom) magnified data set for 0 < Δ < 1.2mm. 
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Figure 1.11 presents the measured axial load, P, versus measured axial displacement, 

Δ, up to final failure for all fiber angles5. As shown in the expanded view of the early 

stages, in the range 0.05mm ≤ Δ ≤ 0.10mm the load reaches a constant value that is a 

function of fiber angle for axial displacements. For low fiber angles relative to the 

loading direction, the orthogonal weave specimen has a rising load-displacement 

behavior up to maximum load. For fiber angles ≥30o, the initial linear region transitions 

to a falling load regime that eventually leads to a rising load prior to final failure. These 

results, which include a post-buckling regime, are consistent with predictions using Euler 

buckling load formulations and the elastic moduli reported in Table 1.1 for various fiber 

orientations.6  

Using the measured out-of-plane displacement field, w(x,y,z), which is obtained in a 

full-field manner by our stereo-vision systems using 3D-DIC at various load levels, the 

maximum moment in the specimen was determined using the formula Mmax(x=50.8mm, 

y=0, z = 0.50mm) = P●(δ + ½ (w(50.8mm, 0, 0) + w(50.8mm, 0, 1mm). Figure 1.12 

shows the maximum bending moment at mid-length versus the axial compressive 

displacement, Δ. As shown in Figure 1.12, even for large deformation conditions where 

the applied axial loading is relatively constant, the measured bending moment is a 

monotonic function of end-point displacement throughout the loading process for all fiber 

angles. Furthermore, even though the axial loading is relatively constant for various 

                                                           
5 For +/- 45o fiber orientation, the specimen did not fracture even when end displacement 
exceeded 90% of its length, even though significant damage was visually evident (fiber 
buckling on compression side, massive matrix cracking) at maximum displacement. 
6 In this work, post-buckling refers to the response after elastic buckling of the specimen 
has occurred. Here, elastic buckling is predicted quite well by classical Euler buckling 
theory. The concept of post-buckling response for composites is discussed in a recent 
book [54] 
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angles, the maximum moment results are ordered in the same manner as both the elastic 

moduli of the specimens (see Table 1.1) and the P-Δ data shown in Figure 1.10.  

1.3.2 Surface Strain Measurements 

In addition to the global parameter results shown in Figure 1.11 and 1.12, stereo-

vision with 3D-DIC provides full-field measurement capability for the surface strains 

along the length and width of the specimen within the FOV. For the same axial 

displacement (Δ=40mm), Figure 1.13 shows typical axial strain fields, εxx, on both the 

tension and compression surfaces of the specimen for (a) θ = 0o and (b) θ=45o; the black 

mark on each surface denotes the approximate mid-length location. 

As shown in Figure 1.13, for θ = 0o strain localization occurs across the entire 

specimen width for both the tension and compression surfaces near the mid-length 

(maximum moment) location. At this location, εxx
max ≈ +0.025 on the tensile surface and 

εxx
min ≈ - 0.03 on the compression surface. In addition, curvature measurements along the 

Figure 1.12: Typical local Mmax Versus Δ data at mid-length of specimen 
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length clearly show distinctly higher curvature (lower radius of curvature) in the central 

region where strain localization is most evident.  

 Tension Surface (z= -1mm) Compression Surface (z= 0mm) 

Θ=0o 

  

Θ=45o 

  

Figure 1.13: Measured axial strain field, εxx, on tension and compression sides for 
both θ=0o and θ=45o. 

 

The difference in maximum strains between the tensile and compressive surfaces is 

physically-relevant and requires additional discussion. For θ = 0o, the fibers are oriented 

along the maximum (minimum) strain direction. As indicated in Figure 1.14, for lower 

fiber angles (θ = 0o and θ = 30o), macroscopic visual evidence clearly shows the presence 

of local fiber buckling; broken fibers protruding from the specimen surface and complete 

loss of speckle pattern are clearly visible as the loading proceeds and the curvature 

increases locally. In fact, micro buckling can be observed by eye on the compressive side 

of the specimen for all θ ≠ 45o. The onset of visible micro-buckles is a pre-cursor to final 

failure of each specimen, indicating that the ultimate collapse is primarily due to local 

TENSION SURFACE 

COMPRESSION SURFACE 

COMPRESSION SURFACE 

TENSION SURFACE 
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geometric instability and local fiber buckling on the compression surface of the specimen. 

Conversely, on the tensile side there was no clear evidence of fiber failure, though there 

was some evidence of matrix micro-cracking. 

Thus, the localized region of higher compressive strains is a direct consequence of 

local damage mechanisms that are well-known to be distinctly different between the 

tensile and compressive regions in the specimen. 

For θ = 45o, again there are distinctly different strain localization fields on the 

tension and compression surfaces. On the tensile surface, an hour-glass shaped region is 

 

Figure 1.14: Macroscopic photo of 
compressive surfaces and effect of 
micro-buckling for θ=30°(top) and 
θ=0o fiber orientations. 
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observed where the maximum axial strains occur at the specimen edges. The region is 

bounded by lines at +/-45o, which correspond to the fiber angles of the orthogonal weave. 

Thus, the higher axial strains near the unrestrained specimen edges are consistent with 

matrix deformation in low constraint regions due to the effect of the free edges. 

Conversely, lower strains in the central portion of the hour-glass region are consistent 

with increased constraint on the fiber structure imposed by the surrounding orthogonal 

fiber weave. On the compression side of the specimen, the highly localized strain field 

shows the reverse trend; significantly higher strains in the central region and lower strains 

on the edges of the specimen. The increased strains in the central region are consistent 

with matrix-dominated response for this higher fiber-angle specimen. The lower 

compressive strains near the specimen edges again appear to be related to “free-edge” 

effects.  

Y 

X 

Z 

Critical point: 
specimen failure area 

Geometry 
center of 
specimen 

Figure 1.15: Relationship of critical area and geometry center of specimen 
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Figure 1.15 shows a typical spatial relationship between the beam centerline and the 

position of the final failure point (which usually has maximum axial strains on both the 

tension and compression surfaces). Results from our studies indicate that the final failure 

region occurs within w/2 of the specimen centerline and most often slightly towards the 

stationary end in Figure 1.9. Since random variations in the fiber distribution/weave 

during manufacture are inconsistent with this observation, slight asymmetry in the 

mechanical loading system components (e.g., grips, alignment) is considered to be the 

most likely source of the preferential shift in failure position. 

As one would expect, the evolution of maximum axial strain in the critical region is 

a function of fiber angle and whether the compression or tensile specimen surface is 

considered. Figure 1.16 (1.17) show the evolution of εxx axial strain7 on the compression 

(tension) surface of the specimen. Appendix A shows the evolution of both the transverse 

strain εyy and the shear strain εxy on the compression (tension) surface as a function of 

fiber angle in the same critical region. 

                                                           
7 For all fiber orientations, each strain component in the critical region is obtained by 
averaging the strain values within a 5mm diameter region that is centered at the specimen 
mid-span and mid-width.  
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Figure 1.16: Average εxx strain in critical region on compression surface of 
specimen versus bending moment 
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Figure 1.17: Average εxx strain in critical region on tensile surface of 
specimen versus bending moment 
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Comparison of Figures 1.16 and 1.17 indicates that the measured axial strains on the 

compression side for all fiber angles are much higher than the tension side. Such an 

observation is nominally consistent with the observed presence of micro-buckling in the 

critical region for θ≠ 45o and suggests that the effective bending neutral surface of the 

damaged specimen has shifted towards the tension surface. Further evidence of a shift in 

the bending neutral surface is the nature of the bi-linear (changing slope) functional form 

for the tensile strain data; a shift in slope of the strain-moment data occurs when εxx ≥ 

0.005, suggesting that compression-side damage via micro-buckling occurred prior to 

these strain levels. The observation that the tensile strain field remains linear until 

reaching maximum axial displacement indicates the damaged fiber-matrix structure on 

the tension side has relatively constant resistance to the increasing moment. Conversely, 

the continuing non-linear strain-moment relationship on the compression surface for all 

fiber angles is consistent with increasing damage and decreasing resistance to the 

moment in this region up to specimen collapse. 

1.3.3 Anticlastic Curvature 

For Δ < 5mm, our w(x,y) measurements indicate that nearly the same primary and 

anticlastic beam curvature are present along the specimen length for all fiber orientation 

angles; if w(x,y) data for each fiber angle and a specific Δ < 5mm were plotted together, 

the results are nearly the same. However, for larger Δ, the investigators observed the 

presence of double curvature near the critical region of the compression-bending 

specimen, especially for increasing primary curvature (large Δ implies large w(x,y) and 

hence larger curvature), for all fiber angles.  
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The largest anticlastic curvature (warping) occurred near mid-length in the 45o/45o 

specimen for relatively large Δ. Figure 1.18 shows typical double curvature 

measurements in a 45o/45o specimen with Δ ≈ 40mm. At the top left of Figure 1.18 is the 

three-dimensional shape of the left-half8 of the 45o/45o specimen. At the bottom left is the 

out-of-plane displacement data for the center line of specimen. Figure 1.18 indicates that 

the axial shape of the specimen in the bending-compression experiment approximates a 

sine curve when the deformation is not too large, which is consistent with the expected 

shape using Euler–Bernoulli beam theory with the small deformation assumption 

1/ρ≈d2w/dx2. This observation is due to the coupling that exists between the shape of 

specimen and the bending moment, which is proportional to the second derivative of 

deflection using small deformation theory. Further analysis in author’s next paper shows 

that, for small deformations, this is quite accurate. For large deformations, the shape of 

specimen is more arched than a sine curve and a detailed equation description will be 

given using large deformation theory to show the origin of the differences later. 

Also shown in Figure 1.18 is the cross-width shape of the beam on the compression 

surface in the critical region near the beam centerline. In this case, the difference in out-

of-plane deflection between the center and edge of the beam, Δw ≈ 0.3mm, is 30% of the 

thickness (h=1mm).  

                                                           
8 Since the specimen is loading in a nominally symmetric manner relative to a Y-Z plane 
located at the specimen centerline, data is provided for ½ of the specimen length. 
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Figure 1.19 shows the normalized deflection ratio Δw/h, for 0o/90o, 15o/75o, 30o/60o 

and -45o/+45o specimens in the critical region near the specimen centerline for. 

Inspection of Figure 1.19 shows that (a) for fiber angles from 30o→ 60o, the effect of 

anticlastic curvature appears to be significant in the critical region for relatively large 

values of ∆  near final collapse and (b) for lower fiber angles, the measured Δw/h<0.1 

which suggests that, if a simpler analysis methodology is employed, the effect is small 

and the deformations obtained by considering the response of an orthotropic material 

with two different Young’s moduli may be sufficient. 

Figure 1.18: Full-field deflection data of 45-45 specimen 
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Figures 1.20 and 1.21 show the measured transverse strain, εyy, and the axial strain, 

εxx, on the tension side at mid-span, respectively. Inspection of Figures 1.19 and 1.20 

indicates that when the anticlastic curvature appears to be significant in 30o/60o and -

45o/+45o specimens, the transverse strain is also much larger. However, as shown in 

Figure 1.21, the axial strain at mid-span is only slightly different for all fiber angles. 

 

Figure 1.19: Normalized deflection difference along transverse direction. 

Figure 1.20: Transverse strain on tension side. 
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Though classical lamination theory (CLT) is not strictly applicable for our woven 

composite system, the authors have used CLT as a predictor for our specimen behavior in 

the small displacement regime. According to the mechanical properties given in Table 1.2, 

we can determine the extension-bending coupling matrix B to help understand the 

relationship between bending and in-plane strains.  

For 0o/90o specimen, only B11 and B22 are non-zero terms in matrix B, which 

couple in-plane normal forces to bending curvatures, and bending moments to in-plane 

strains. Experimental evidence to corroborate the presence of coupling is shown in 

Figures 1.22 and 1.23. Here, it is clearly shown that the in-plane strain εxx increases with 

end displacement, which shows positive correlation with bending moment in Figure 1.12. 

Figures 1.16/1.17 gives this relationship more directly.  

In addition, the authors used CLT to help explain the 0/90o specimen response after 

fiber buckling occurs on the compression side and stiffness is lost (less than 10%) along 

the axial direction. As the absolute values of B11 and B22 decrease, this leads to 

Figure 1.21: Axial strain on tension side. 
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increasing in-plane compressive strain relative to the tension surface. This trend is shown 

in Figure 1.22 for the 0/900 specimen, where the compressive strain is considerably larger 

than the tensile values, resulting in through-thickness asymmetry in the axial strain 

distribution.  

Also, CLT theory suggests there is no coupling between bending and in-plane 

strains for +/- 45o fiber orientation, This prediction is consistent with observations 

documented in Figure 1.23, where even for very large axial displacements, the range in 

strain for εxx is nearly the same on both compression and tension surfaces.  

Additional figures demonstrating the observed relationship between in-plane strain 

and end displacement are given in Appendix A. 

1.3.4 Strain Variations for Small and Large Compressive Displacement 

Figures 1.22 and 1.23 shows the axial strain field εxx on the compression side and 

tension side of 0o/90o and 45o/45o specimens, respectively, when the end displacement Δ 

equals to 10, 20 and 40mm. In each figure, both full-field data and a line plot in terms of 

arc length, S, of the data along the specimen centerline are shown. The S coordinate has 

the same direction as X coordinate, with origin identified by a red arrow on the left edge 

of the specimen. Appendix A presents the transverse strain field, εyy, and shear strain 

field, εxy, on the compression side and tension sides for 0o/90o and 45o/45o specimens, 

respectively, when the end displacement Δ equals to 10 and 20mm. 

.
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Figure 1.22: Axial εxx field and centerline plot of εxx on compression and 
tension surfaces of θ = 0o/90o specimens for Δ =10mm, 20mm and 40mm. 
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Figure 1.23: Axial εxx field and centerline plot of εxx on compression and 
tension surfaces of θ = 45o/45o specimens for Δ =10mm, 20mm and 40mm. 
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Axial Strain Field 

Inspection of the tension surface data on the 0/90 specimen in Figure 1.22 clearly 

shows an oscillatory strain field for Δ = 10mm that is considerably larger than the 

estimated variability in strain for our measurements. The oscillations in strain are 

somewhat muted as the deformation increases. These observations are consistent with the 

expected shear transfer process between fibers and matrix that requires sufficient distance 

to complete; the distance between peaks is ~10mm for our woven fiber-matrix material 

system, which is about 10 times of weave size of specimen and physical subset size of 

DIC, and hence is resolvable by the stereo-vision measurement method. Conversely, for 

the 45o/45o specimen, all local peaks in axial strain are muted, suggesting that load 

transfer processes are relatively insensitive to axial position along the specimen for high 

fiber angle configurations. 

As noted previously, for all fiber angles the general shape of the beam-compression 

specimen is quite similar for all fiber angles. Even so, the measured strains in the region 

of final collapse can be quite different, as well as the local curvatures. For Δ=40mm, 

Figure 1.24 shows the axial strain εxx distribution along the transverse direction on the 

compression side for the 0o/90o and 45o/45o specimens. It is clear that the strain 

differences along transverse direction are quite different, most likely due to the effect of 

increased anticlastic curvature for the 45o/45o specimen. 
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1.3.5 Fiber direction and axial-transverse direction strains in critical region  

Using full-field data such as shown in Appendix A, the average εyy and εxy on both 

the tension and compression surfaces in the critical region were obtained (see Footnote 7) 

as a function of applied moment. By transforming the measured strains from specimen 

coordinates (x,y) into the primary fiber directions (1,2) as shown in Figure 1.25, Figures 

1.26 and 1.27 present the average fiber 2 strain, ε22, vs. moment in the critical region on 

both compression and tension surfaces for all fiber angles. Figures 1.28 and 1.29 present 

the average shear strain, ε12, vs. moment in the critical area on both the compression and 

tension surfaces for all fiber angles.  

0o/90o Specimen 

Δw/h = 0.05 

45
o
/45

o
 Specimen 

Δw/h = 0.30 

Figure 1.24:  Axial strain εxx distribution along transverse direction on 
compression side of 0o/90o (top) and 45o/45o (bottom) specimen, Δ = 40 mm.  
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With regard to the strain ε22, as shown in Figure 1.26/1.27 for 0o-90o, 15o-75o, 90o-0o 

specimens, ε22 is small on both compression and tension surfaces, increasing for 45o-45o, 

60o-30o and 90o-0o as the fiber 2 direction orients more closely with the loading direction. 

 

y 

x 

1 
2 

Figure 1.25: Coordinate systems for transformation between specimen and fiber directions. 
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Figure 1.26: Average ε22 strain of critical area on compression 
surface of specimen versus bending moment 
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Figure 1.27: Average ε22 strain of critical area on tension 
surface of specimen versus bending moment 
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Figure 1.28: Average ε12 strain of critical area on compression 
surface of specimen versus bending moment 
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As shown in Figures 1.28 and 1.29, the shear strain ε12 is negligible between the fiber 

directions for both 0o and 90o specimens, consistent with expectations and demonstrating 

that any fiber motions were essentially rigid rotations on the macroscale. With regard to 

other fiber orientations, as shown in Figures 1.28 (1.29), increasing positive (negative) 

shear strain was measured as the fiber angle increased from 15o to 45o or decreased from 

90o to 45o on the tension (compression) surfaces. Thus, our measurements indicate that 

the fiber directions 1 and 2 rotated towards (away from) each other on the tension 

(compression) surfaces, an observation that is consistent with theoretical predictions and 

physical expectations.  

1.3.6 Poisson’s Ratio 

In addition to the fiber oriented strain data, measurements reveal an approximate 

linear relationship between transverse strain εyy and moment for all fiber angles. 

Consistent with the results in Figures 1.16 and 1.17, which show a linear relationship 

between axial strain and Mmax. The results indicate that the ratio between axial and 
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Figure 1.29: Average ε12 strain of critical area on tension surface 
of specimen versus bending moment 
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transverse strain is essentially constant throughout the deformation process. This is also 

true for 30-60, 45-45 and 60-30 specimens, which have much larger transverse strains 

(nearly 50% of axial strain). 
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Figure 1.30: εyy Versus εxx on tension side for 0o specimens 

0°- 1

0°- 2

0°- 3

Linear (0°- 1)

Linear (0°- 2)

Linear (0°- 3)

y = -0.1261x - 0.0001 

y = -0.1253x - 0.0001 

y = -0.1167x + 2E-05 

-0.0014

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0 0.002 0.004 0.006 0.008
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Using the measured axial and transverse strains for three 0o and three 90o specimens 

in small deformation region (maximum strain less than 0.8%), the investigators computed 

the average ν12 and ν21, respectively, for the specimen on the tension and compression 

surfaces. On the tension surface, the investigators obtained ν12 = 0.152 +/- 0.005 and ν21= 

0.122 +/- 0.005, which is graphically shown in Figure 1.30 and 1.31. This result is in 

good agreement with recent findings of Pollock et al [22] where ν12 = 0.15 and ν21= 0.13. 

 

On the compression surface, the investigators observed a different behavior in 

Poisson’s ratio. Graphically, this is shown in Figure 1.32 for 0o and 90o specimens. 

Though there is considerable scatter in the data in Figure 1.32, the investigators obtained 

ν12 ≈ 0 and -0.10 ≤ ν21 ≤ -0.40. With regard to the somewhat anomalous behavior on the 

compression side for Poisson’s ratio, the investigators observed that Poisson’s ratio on 

the compressive surface varied considerably across the specimen width at various axial 
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Figure 1.32: εyy Versus εxx on compression side for 0o and 90o specimens 
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positions. This anomalous behavior is also shown graphically in the εyy results on 

compression side presented in Figures A.1 and A.2. Specifically, our compression-

surface measurements indicate that Poisson’s ratio is small near the specimen centerline, 

becoming either negative near the edges or positive near the edges of the 0o and 90o 

specimens, depending upon the axial position that is selected. The variability shown in 

Figures A.1 and A.2 demonstrate that compressive effects in woven composite 

components can lead to highly localized deformations due to effects such as fiber 

buckling or crimping. 

Figure 1.33 shows the experimental εyy/εxx results on tension side for all fiber 

orientation specimen and Poisson’s Ratio values quantitatively determined using the 

equations in [22]. All experiment results in plot are close to theoretical expectations 

except for 45 degree specimen, which is 20% higher than predicted. 
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1.4 Theoretical Model 

To analyze the loading process for the experiment described in Section 3, the author 

analyses both the small deformation situation, which uses the Euler–Bernoulli beam 

theory, and the large deformation situation which uses a modified Drucker’s equation. 

1.4.1 Euler–Bernoulli beam theory 

The Euler–Bernoulli beam theory is a simplification of the linear theory of elasticity 

which provides a means of calculating the load-carrying and deflection characteristics of 

beams. The common orthogonal coordinate system used for all analysis is shown in 

Figure 1.34.  

 

Here, x is along the original beam length, s is arc length along the beam at any 

loading, w is the transverse displacement of the beam at any x or s position, and e is the 

load eccentricity. Appendix B provides the detail theoretical development, leading to the 

following solution for the out-of-plane displacement; 
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Figure 1.34: Coordinates Setup. 
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( ) 1 cos( 1 cos sin )
sin

Lw x e x x
L
λλ λ

λ
−

= × − + +
    (1)

 

with λ= (P/ EθI)1/2, where Eθ is the Young’s modulus obtained during axial loading 

of a specimen with fiber orientation θ relative to the loading axis. The Euler-Bernoulli 

expression in Equ (1) is valid only for small strains and small rotations. It will have 

substantial errors for large deflections of a cantilever beam because the elementary theory 

neglects the square of the first derivative in the curvature formula, which gives an 

increasingly important contribution to the solution for large deflection problems. 

1.4.2 Large Deformation of Beams 

In 1945, Bisshopp and Drucker [51] presented a new theory which corrects for the 

shortening of the moment arm as the loaded end of the beam deflects. As shown in Figure 

1.35, key parameters in the development are related to the arc length, s, which is required 

to analyze large deflection bending analyses.  
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Figure 1.35: Differential relationship. 
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The differential equation describing beam-column response under large deflections 

as shown in Figure 1.35 is written as: 

( )
2

0 2( ) d w dM Pw s M s EI EI
ds ds

θ
+ = = − = − ×

   (2) 

Assuming that the load eccentricity, e, is small, the solution for the large 

deformation response of a bending compression member is given in Appendix B, 

resulting in the following key results for the axial load and lateral displacement; 

[ ]2

2

4 ( )F k EI
P

L
=

    (3) 

where k is the elliptic modulus or eccentricity, and F(k) is the complete elliptic 

integral of the first kind in trigonometric form ; 

 
2

2 2
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dF k
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π

β
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−

∫        (4) 

Thus, 

0

0
0

1 2sin cos cos
2 cos cos
EI EIw d
P P

θ

θ

θ θ θ θ
θ θ

= − = × −
−∫

  (5) 

where, as shown in Figure 1.35, θ0 is the end rotation angle of the specimen about 

the unrestrained z-axis, and 

   2 22cos s1 inkθ β= −
     

2
0cos 21 kθ = −    (6) 

Figure 1.36 shows the relationship between experimental and predicted trends 

between end compression load, P, and the maximum lateral beam deflection at the middle 

of the specimen, wmax, for a nominally isotropic fiber orientation (0-90). Results indicate 

that the linear theory is in excellent agreement with experimental measurements during 
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the early stages, eventually diverging as the beam approaches the buckling load. As the 

load increases further, trends in the large deformation prediction are in good agreement 

with experimental results beyond the initial “buckling” load, though slightly over-

predicting the required loading for continued deformation. The deviation observed for 

larger loading will be reviewed in more detail in the Discussion section. 

 

1.4.3 Shape and Strain Estimates 

Since specimen strain is related directly to the bending shape, both the shape of 

specimen and the strain at each point along the length can be determined for each applied 

load and axial displacement. The results are given in Appendix B and the key results are 

presented below. 

( )0 0cos 4 , 2 1 cos ,
2 2

EI EIL L E k F k
P P

π πθ θ   ∆ = − × − × × + × + ×   
   

  (7) 

Using Equ (B-27) in Appendix B, this expression can be written as follows; 
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Figure 1.36: Load versus maximum beam displacement 
at x=L/2 for 0-90 fiber orientation. 
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( ) ( )0 0cos 2 1 co
)

s
(

H k
L L L L

F k
θ θ∆ = − × − × + × +    (8) 

With Equ (8), we can define the relationship between the end displacement, Δ, and 

the deflection, w(x), along the x-direction throughout the entire bending and compression 

loading process. Furthermore, for nominally isotropic material response, this relationship 

is independent of the modulus, E, suggesting that both 0o/90o and -45o/+45o fiber 

orientation specimens may have similar deflected shapes along the axial direction. 

Figures 1.37a and 1.37b present the predicted (blue line) and measured (red line) 

shape of the beam centerline for 0o/90o and -45o/+45o fiber angles, respectively, for 

Δ=10mm, 20mm and 40mm. As anticipated, the shape of the beam centerline is 

accurately predicted for all cases. This observation is expected to be true since the 

experiment was performed in displacement control where large deformation beam theory 

should provide excellent agreement. It should be pointed out that the experimental loads 

to achieve these deformed shapes are slightly over-predicted by the large deformation 

theory (see Figure 1.36 for the 0o/90o fiber orientation results).  
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(a) 

 
(b) 

Figure 1.37: Shape of the beam: (a) 0o/90o specimen; (b) -45o/+45o specimen. Blue line is 
the theoretical prediction. Red line represents the experimental measurements. 

 

According to Equ (B-15) in Appendix B, the curvature of specimen can be 

expressed as a function of load P and rotation angle θ as follows; 
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0
1 2 cos cosd P

ds EI
θ θ θ

ρ
= = − × −

    (9) 

where ρ is the radius of curvature along the primary beam axis. If we assume the 

neutral surface is at the mid-plane through the specimen thickness, the surface strain 

prediction under large deformation is written: 

0
1 2 cos cos

2 2 2xx
h h d h P

ds EI
θε θ θ

ρ
= − × = − × = × × −

  (10) 

Using Equ (B-27) and (B-30), this expression can be simplified to give; 

[ ]2

2

( )
2

2xx

F kh Pw h w
EI L

ε = × = × ×
      (11) 

where w(x,y) is the out of plane displacement at the section of interest. 

 

For 0o/90o specimen with axial displacement Δ = 20mm, Figure 1.38 compares both 

large deformation predictions (red line) and experimental measurements on the tensile 

(blue line) and compressive (green line) sides of the specimen. Although there are 
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oscillations in the measured strain field caused by the heterogeneous nature of the 

composite, the theoretical strain results and trends are in very good agreement with the 

experimental measurements (Appendix B discusses the accuracy of the strain 

measurements). It is noted that the compression side result deviations from the 

predictions are in the most highly strained region near mid-length. In this region, the 

authors observed the presence of fiber buckling9 on the compression surface when Δ ≥ 

20mm, which most likely contributed to the increase in measured macroscopic 

deformation. Figure 1.39 shows the detail axial εxx field and centerline plot of εxx on 

compression and tension surfaces of θ = 0o/90o specimens for Δ = 20mm. 

Additional evidence to support this conjecture is given in Figure 1.39, which focuses 

on the evolution of axial strain10 εxx vs. end displacement in this critical region on both 

the tension and compression surfaces of the specimen. In the small deformation regime 

(axial strain less than 0.3-0.5%), the theoretical prediction matches the tension and 

compression experimental results. However, beyond this point the strain values on the 

compression side begin to deviate by increasing amounts from both the theoretical 

predictions and the tensile data, with microbuckling evident on the compression surface 

in the high strain region of the specimen.  

                                                           
9  Another factor that contributes to composite failure, and is assumed to be an 
independent mechanism, is fiber kinking. The authors did not observe isolated fiber 
kinking in the initial specimens, nor in the damaged specimens, in these studies though 
some fiber kinks appeared in the micro-buckled regions of the specimen. Such 
observations are consistent with the work of Sun and Tsai [55] and Panasart et al [56] 
who noted that fiber kinking is likely initiated during micro-buckling and may not be an 
independent failure mechanism in many cases. 
10 Axial strain in the critical area is obtained by averaging the strain values within a 5mm 
diameter region that is centered at the specimen mid-span and mid-width.  
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Since the local reaction bending moment at mid-length is a monotonic function of 

end-point displacement throughout the loading process, including the influence of both 

the applied load and the transverse deflection, Figure 1.40 shows how the axial strain 

component at L/2 evolves with increasing bending moment M(L/2) for 0o/90o specimens. 

Inspection of Figures 1.39 and 1.40 clearly shows that (a) the compression side axial 

experiment result matches the theoretical prediction for εxx ≤0.003, and (b) the tension 

side axial strain agrees with predictions for εxx ≤ 0.010. The deviations shown in Figures 

1.39 and 1.40 appear to be early indicators of increasing damage during the deformation 

process, though other factors may also affect the comparison. 
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Figure 1.39: Strain vs. end displacement for 0o/90o specimen  
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1.5 Effective Stress and Effective Strain 

The theory for determining engineering constants and developing a single equation 

that describes the macroscopic/continuum behavior of a composite into the non-linear 

regime, regardless of specimen orientation, has been developed and employed by 

investigators in the past few decades, including Sun [2], Dvorak [3], Kenaga [13], 

Reifsnider et al [19-21], and Pollock et al [22], who used the concepts to extract specific 

elastic composite material properties.  

Assuming a planar state of stress and an orthotropic material system aligned with the 

primary fiber direction, then the stored energy function can be written; 

 
( )2 2 2

1111 11 1122 11 22 2222 22 1212 12
1
2

w a a a aσ σ σ σ σ= + + +
  (12) 

where 
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Here, it is further assumed that σ33 = σ13 = σ23 = 0 in our thin compression-bending 

specimen, with the end conditions determined using the measured axial loading and 

bending moment.  

By transforming the measured strains from specimen coordinates (x,y) into the 

primary fiber directions (1,2) as shown in Figure 1.41, the stresses along the fiber axes 1 

and 2 can be written in terms of the axial stress, σθ, as follows 

2 2
11 22 12 =   cos ( )  =   sin ( )  =  sin( ) cos( )θ θ θss  θ ss  θ ss  θ θ−， ，  (14) 

 

Combining Equations (12) and (14), the following form for the stored energy is 

obtained; 

2 4 2 2 412

1 12 1 2

21 1 1 1cos ) sin )cos ) sin
2

( ( )( ([ ]w
E G E Eθ

υs θ θ θ θ
 

= + − + 
   (15) 

If we define the “axial” stress as σθ when the direction of applied loading at an angle 

θ relative to the primary fiber direction11, then the component of axial strain along the 

direction of applied loading is εθ and it is given by;  

                                                           
11 There are two primary fiber directions for an orthogonal weave. During CT scanning of 
this material, it was observed that one of the primary directions had slightly more fibers 
per unit volume than the companion orthogonal set. Thus, the “primary fiber direction” is 
based on the direction with maximum load in a tension test, which also has the larger 
number of fibers. 
 

Figure 1.41: Coordinate systems for transformation between specimen and fiber. 
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( )2
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∂

= =
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For woven composites with nonlinear deformation, Xing and Reifsnider [21] 

defined h(θ) as 

( ) 4 4 2 2
1 2

3 [cos ( ) sin ( )  2c sin ( ) cos ( )]    
2

h cθ θ θ θ θ= + +
 (17) 

In the linear elastic region, we can determine the value of c1 and c2 by the material 

properties, 

1 1
2

2
1 12

12

                        c         c
2

E E
E G

υ= = −
   (18) 

Consistent with Reifsnider work [19-21], we can define an effective stress θσ , and 

the corresponding effective strain θε  as follows;  

  ( )
, ( )h

h
θ

θ θ θ
εε σ σ θ
θ

= = 

   (19) 

In this study, the stress σθ is determined using Equ (20), where the mechanical loads 

and specimen dimensions are determined experimentally, with the effective strain 

obtained by transforming the measured strain field, which uses the axial specimen 

direction as x and the transverse specimen direction as y. 

 
cos ,xx xx

P M h
A Iθ θ

ϕss  ε ε× ×
= ± = =

   (20) 

It is worth noting that the ratio of effective strain and stress using Eq (19) can be 

written as follows; 
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Thus, it is evident that θ θε σ   should equal a constant regardless of the orientation 

of the specimen, indicating that Equ (21) provides a framework for extracting a “single” 

stress-strain relationship for a specimen. To assess the utility of Equ (21) in these studies, 

Figure 1.42 and Figure 1.43 show the effective stress and strain relationship obtained on 

both the compression and tension surfaces under bending-compression loading, 

respectively. Inspection of Figures 1.42 and 1.43 shows that, the results for all fiber 

orientation specimens are nearly identical when the effective strain is less than 0.004 on 

both sides. Thus, in this region, the values of parameter c1 and c2 obtained using the 

elastic material properties are sufficient to characterize the effect of fiber orientation and 

collapse all of the experimental data into a signal master curve. These results are 

consistent with previous work by Sun [7] for a single parameter model and Ogihara [19] 

for a dual parameter model which indicated that for tensile specimens, even in the non-

linear range it is oftentimes possible to use effective properties and obtain a “single 

master curve”.   

For our bending specimen, beyond this initial region, the results deviate from this 

single functional form as the deformation increases further. Consistent with the work of 

Ogihara and Sun, the authors varied c2 to seek an optimal coalescence of the results. 

However, in this case, there was limited improvement since the +/-45o results did not 

coalesce with the remaining angles. As noted by Sun [7] the effective stress and strain 

concept will be effective only when the matrix damage is dominant and the fibers do not 

participate in the nonlinear response in any substantial way. In our case, fiber rotation 

was observed in the +/-45o specimen as the deformations and damage increased. 

Furthermore, significant fiber buckling was observed on the compression side as the 
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damage increased for most fiber angles. Taken together, these observations indicate that 

it is unlikely that a single master curve can be identified in the larger strain range for our 

bending specimen using these effective stress and strain concepts. 

 

 
 

1.6 Finite Element Analyses 

To further explore the applicability of σeff - εeff concepts for characterizing the 

compression and tensile response, a finite element analysis of the beam-compression 

 
(a) 

 
(b) 

 Figure 1.42: Effective stress versus the effective strain on the compression side for all 
fiber orientation. (a) Maximum axial strain from 0.000 to -0.030; (b) Maximum axial 
strain from 0.000 to -0.005 

 
(a) 

 
(b) 

 Figure 1.43: Effective stress versus the effective strain on the tension side for all fiber 
orientation. (a) Maximum axial strain from 0.000 to 0.030; (b) Maximum axial strain 
from 0.000 to 0.005 
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member is performed by the authors. The explicit12 finite element code, Abaqus [57], was 

selected for this investigation. All models were defined using (a) reduced integration 

solid elements CPE4R and (b) shell elements in the Abaqus/Explicit solver where the 

composite material model employed is consistent with experimental measurements [22] 

for the woven glass-epoxy material. For the solid element model, a total of 1500 elements 

were used; 6 layers through the 1mm thickness and 300 elements along the 150mm 

length. For the shell element model, a total of 600 elements along the length in a single 

layer were used. 

 

Boundary conditions were applied at each end of the specimen that approximated 

the experimental grip conditions. At one end, all three displacement components along a 

transverse line at mid-thickness were set to zero and rotation about this line was 

                                                           
12 An implicit finite element method (FEM) is usually employed for small displacement 
stress analysis. An iterative solution of this type is not particularly well suited to the large 
displacement analysis of composite materials, whose post first-ply failure behavior is 
often highly non-linear.  

Figure 1.44: The mesh of FE model 
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unrestricted. At the other end, two of the three displacement components along a 

transverse line that is offset from the centerline by the eccentricity, e, were set to zero. At 

this end, the axial displacement component (Δ) was specified for this line element and 

rotation about the line again was unrestricted.13 

For the same axial displacement ( )10mm  or =20mm∆ = ∆ , Table 1.4 shows the 

typical axial strain results at mid-span and mid-width, εxx (x=L/2, y=0), on both the 

tension and compression surfaces for 0o/90o and -45o/+45o specimens; strain values 

shown in Table 1.4 for both FE and Experiments are the average over a 5mm diameter 

region centrally located across the width of the beam specimen. As shown in Table 1.4, 

there is very good agreement between the FEM results and the experimental 

measurements for the two applied axial displacement values. 

Table 1.4: Comparison between the DIC and the 
FEM simulation on the strain on tension and 
compression side two displacement, i.e. 10 mm and 
20 mm. 

0o 
Tension side Compression side 

DIC Exp. FEM DIC Exp. FEM 

10 mm 0.0092526 0.007937 -0.010326 -0.00839 

20 mm 0.0147219 0.01294 -0.015405 -0.01359 

45o 
Tension side Compression side 

DIC Exp. FEM DIC Exp. FEM 

10 mm 0.0096017 0.00838 -0.013182 -0.01366 

                                                           
13 Another approach for assigning boundary conditions is to use the measured (u,v,w) 
displacement data on both surfaces at positions near the grips with a linear approximation 
through the thickness. This was used effectively in previous studies by the authors [58]  
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20 mm 0.0131822 0.01483 -0.019687 -0.02043 

The comparison between the experimental and the FEM results of the deflection W

versus the axial displacement Δ with shell and solid elements are shown in Figure 1.45. 

As shown in Table 1.4, a nearly perfect matching between the experiment and the FEM 

simulation is obtained using solid elements. The deflection prediction using the shell 

element deviates substantially for Δ > 1mm, so that all further analyses were performed 

with the solid element mesh. 

 

Figure 1.46 and 1.47 compare experimental measurements and simulation 

predictions for the effective stress versus the effective strain on the tension surface for 

0o/90o and -45o/+45o specimens, respectively. As shown in the two figures, simulation 

results provide reasonable upper and lower bounds on the measurement results, with the 

tensile predictions for 0o/90o  specimen providing an upper bound and tensile predictions 

for -45o/+45o providing a reasonable lower bound. Regarding these comparisons, it is 

important to remember that; 

• Woven specimen structure is not considered in the FE models  

Figure 1.45: Deflection along the longitudinal direction w (mm) versus the 
displacement x (mm) for the experiments, the shell and the solid finite element. 
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• Damage is not considered in the FE models 

 

 
It is also noted that, for both fiber angles, there is reasonably good agreement 

between simulation results and the experimental data for an effective strain less than 

Figure 1.46: Effective stress versus the effective strain on the 
tension side for 0 degree fiber orientation. 

 

Figure 1.47: Effective stress versus the effective strain on the 
tension side for 0 degree fiber orientation. 
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0.003. Since these two cases provide the extremes, one could logically conclude that 

there is acceptable agreement for all fiber angles in this regime. 

In addition to the simulation-experiment comparison, it is relevant to study the 

experimental data in more detail. Figures 46 and 47 indicate that we can identify three 

linear regimes in the specimen response. In the 1st stage, it is conjectured that the 

specimen undergoes limited damage and fiber reorientation. This regime extends from 0 

≤ εeff < 0.005 for 0o/90o specimen and 0 ≤ εeff < 0.002-0.003 for the -45o/+45o specimen. 

It is conjectured that the -45o/+45o specimen behaves the same as the 0o/90o due to the 

presence of a woven laminate structure. Of course, this trend is not visible in the FEM 

simulation because the woven nature of the structure is not modeled.  

For the -45o/+45o specimen, the 2nd stage from 0.003 < εeff < 0.05 response appears 

to be a combination of damage and fiber rotation, leading to the behavior shown. In fact, 

the experimental response is parallel to the simulation prediction, indicating that the 

woven laminate is behaving as an unwoven -45o/+45o laminate. For the 0o/90o specimen, 

there is only a slight difference in response in the 2nd and 3rd stages, suggesting that for 

0.005 < εeff < 0.01 there is a combination of micro-crack accumulation and eventually 

crack/damage propagation. Finally, for the 3rd stage in the -45o/+45o specimen, there is a 

clear indication that damage is accumulating as the internal fiber structure reaches 

maximum fiber rotation in the woven geometric structure, with the onset of further 

micro-cracking and propagation as this occurs.  
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1.7 Conclusion 

A series of large deflection bending-compression experiments and model predictions 

have been performed on a woven glass-epoxy composite material to improve our 

understanding of the specimen response. 

A combined specimen-fixture-mechanical loading system has been (a) developed 

with an integrated 3D-DIC measurement system, (b) used successfully to obtain the full-

field deformation measurement for both tension side and compression surfaces of a small 

woven composite specimen undergoing combined compression-bending loading and 

large deformation and (c) used to study the nonlinear behavior of a woven glass/epoxy 

laminate undergoing compression-bending loading. 

Experimental results for specimens undergoing both linear and highly non-linear 

deformations during monotonic loading clearly show the strong relationship of fiber 

angle to the global response variables, P-Δ and Mmax-Δ. The critical strain concentration 

region on the compression bending specimen has been investigated for all fiber angles. 

The strain results show that the axial strain εxx along the longitudinal and transverse 

directions are generally non-uniform and a strong function of fiber angle. Similar results 

were measured for both the transverse strain εyy and shear strain εxy. The presence of 

anticlastic curvature in the specimens is clearly shown in Figures 18 and 19, reaching a 

maximum approaching 40% of the specimen thickness at mid-span for +45o/-45o 

specimens. Furthermore, there is a 1-1 correspondence between increasing anticlastic 

curvature and increasing negative transverse strain, εyy, at mid-span, confirming the 

expected coupling between the in-plane strain field and the corresponding curvature 

component. 
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Using both Euler–Bernoulli beam theory for small deformations and a modified 

Drucker’s equation for large displacement applications, direct comparisons of 

experimental and model predictions have been presented. Especially, the modified 

Drucker’s equation effectively extends the theory prediction to the large deformation 

region, providing an accurate estimate for (a) the buckling load, (b) the post-buckling 

axial load-axial displacement response of the specimen, (c) the axial strain along the 

beam centerline, (d) axial strain at mid-span as a function of local applied moment and 

far-field axial displacement Δ. The modified Drucker formulation prediction of axial 

strain at mid-span in the +0o/90o specimen is in excellent agreement with the tensile and 

compressive surface measurements over a specific range in the local moment (M < 0.2N-

m). Beyond this point, the tensile surface data deviates slightly from the model 

predictions, whereas the actual compressive strains deviate further from the model. The 

results are consistent with physical observations which clearly showed (a) limited matrix 

cracking on the tensile surface, and (b) micro-buckling on the compression side that 

resulted in higher local strains than would be predicted by the undamaged model. 

As shown in Figs 42 and 43, there appears to be a nearly 1-1 correlation between 

effective stress and effective strain for strain values < 0.005. Since damage has been 

observed in this material for much lower levels of strain, the results suggest there may be 

the potential to employ these observations in an appropriate damage prediction 

methodology. Thus, this is one of the most important observations in the paper. By 

employing concepts developed by other authors including CT Sun [7] and KW Reifsnider 

et al [19-21], the authors have shown for the first time that there exists a range of 

deformations where the measured effective stress-effective strain response of the 
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composite material coalesces into a single master curve for both tensile and compressive 

loading regimes. Here, the definition of effective quantities essentially attempts to 

"normalize" the response through use of a function that represents the effect of the fibers 

oriented at different angles. In principle, such an approach should work well as long as 

the primary failure mode is matrix cracking with minimal change in fiber orientation or 

damage. When fiber effects become more important, then the normalization used in the 

definition may not account for the differences in deformation, and this is confirmed by 

the slow deviation of the response with fiber angle on both the tensile and compression 

surfaces of the beam specimen. 

Finite element analysis also has been used to further investigate the behavior of woven 

GFRP under combined bending-compressive. Concerning the nonlinearity expected in 

these experiments, the result presents a finite element model capable of estimating the 

large deformations (e.g., axial, transverse) induced by the combined bending-

compression loading. The FE model shows the effectiveness in predicting the response of 

laminated composite beams with different fiber orientation angles, and further explore the 

applicability of σeff - εeff concepts for characterizing both the compression and tensile 

response 

.
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CHAPTER 2 

SEM-DIC Based Nanoscale Thermal Deformation Studies of Heterogeneous Material 

2.1 Introduction 

Current developments in science and engineering have led to increasing demand to 

fabricate and control materials structures on the scale of micro/nanometers, and have 

brought a significant increase in need for quantitative measurements of material behavior 

on the micro/nanometer scale. In particular, modern electronic packaging and micro-

devices are being manufactured with heterogeneities and reduced spatial size, requiring 

detailed understanding of the true response of these heterogeneous material systems on 

the micro/nano-scale under controlled thermal, mechanical and hygroscopic 

environmental condition. However, measurements on microstructural scales have serious 

challenges [60] which require specific tools and methods. 

Aside from the widely used strain gauge technique, which is pointwise and hard to 

decrease its physical size to satisfy the micro/nanometer scale, various full-field non-

contact optical methods [61] have been developed and applied for this purpose. 

Interferometric techniques, including holography interferometry, speckle interferometry 

and moir´e interferometry have been used in specific cases. For example, Kujawinska [62] 

introduced the general concept of an optical measurement station with optical microscope 

and interferometry technique. He used a cross-type diffraction grating with 1200 

lines/mm to measure the in-plane displacements on a two-phase steel polycrystalline 

material after plastic. A drawback of interferometric metrologies is that they oftentimes 

http://www.sciencedirect.com.pallas2.tcl.sc.edu/science/article/pii/S1044580305001968#bib1
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have stringent requirements under experimental conditions, such as the need for a 

coherent light source. Thus, the measurements are normally conducted using a vibration 

isolated optical platform. The resultant measurements are oftentimes presented in the 

form of fringe patterns which require fringe processing and phase analysis techniques 

[63]. Another type of measurement method is known as non-interferometric. These 

include grid methods [64, 65] and digital image correlation (DIC) [66-74].  

As a representative non-interferometric optical technique, the DIC method has been 

well established and widely used as a powerful and flexible tool for the deformation 

measurement in experimental mechanics. Its full-field capabilities and non-contacting 

approach are especially advantageous to provide both qualitative and quantitative 

information of the specimen’s deformation response. It requires simple experimental 

setup and specimen preparation with low requirements in measurement environment, 

which can easily be applied to different kinds of areas. In addition, the DIC technique has 

no inherent length scale, and thus it covers a wide range of measurement sensitivity and 

resolution, from the macroscopic [75] to micro- or even nano-scale [76-79]. In previous 

studies, the method has been employed using various high spatial resolution digital image 

acquisition devices, including optical microscopy [80–82], laser scanning confocal 

microscope (LSCM) [83, 84], scanning electron microscopy (SEM) [85–94], atomic force 

microscopy (AFM) [95–105] and scanning tunneling microscope (STM) [106–108]. DIC 

combined with a high-spatial-resolution imaging device (especially, SEM and AFM) is 

the most effective and flexible tool for observing and quantitatively measuring microscale 

deformation at reduced size. 
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For the application of digital image correlation for full-field deformation 

measurements, the random pattern must be appropriately sized (e.g., 5x5 pixels2 in area 

per speckle) and have good contrast for the size of the region of interest. However, 

generating a surface pattern of speckles suitable for DIC at the micro- and nano-scale that 

are achievable using an SEM or AFM is challenging. Because the speckle size 

requirement is well below the capabilities of patterning methods commonly used for DIC 

at larger scales, such as airbrushing and toner powder [109], a variety of patterning 

methods have been developed. Existing methods include nanoparticle (NP) techniques 

[110,111], chemical vapor thin film rearrangement [112] and patterning of polymeric 

substrates through the use of a contact lithography method [113]. Patterning techniques 

have continued to evolve with recent additions including thin film ablation [114], 

photolithography [109, 112] and electron-beam lithography [115,116]. Most of them are 

elaborate, expensive, time consuming or can only produce the pattern over small areas of 

the test sample. Kammers and Daly [117,118] recently developed a self-assembled gold 

nanoparticle (AuNP) patterning technique that eliminated many of the limitations 

inherent to other methods. By employing their approach, the author has shown that high 

quality, nanoscale patterns can be deposited on the whole surface of specimen. 

Due to the nature of white light, optical imaging methods are limited to a maximum 

resolution on the order of the wavelength of light (about 1 μm) as the smallest length unit. 

To access smaller scale of measurements, imaging systems based on an SEM have been 

developed and improved by many researchers [85–94]. One critical issue encountered in 

using SEM systems is that the imaging principle is quite different from traditional optical 

microscopy, and thus a new model and calibration process are necessary. Figure 2.1 
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presents a schematic of a typical SEM system. After e-beam generation in a thermal 

emission gun (TEG) or field emission gun (FEG), the electron beam passes through a 

series of electromagnets and is focused onto the specimen surface. Radiation is emitted 

when the electrons interact with the atomic structure of specimen. A digital representation 

of the specimen’s emitted radiation is produced using a raster-scan process and a photon 

collector; typical photon collectors are the Secondary Electron Detector (SED) and the 

Back Scattered Electron Detector (BSED). Since the e-beam position is open loop 

controlled in a typical modern SEM system, the rastering process will cause positional 

Figure 2.1 Schematic of a typical scanning electron microscope and imaging process 
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errors in the scanning process due to environmental and system variations [119], such as 

electromagnetic field fluctuations, beam positioning spatial distortion, time-dependent 

drift (most of time associated with charging of the specimen) [120], and mechanical 

vibrations. Most papers employing SEM imaging, and even commercial SEM 

measurement system manufacturers, simply ignore these effects and consider a pure 

projection model [121–126]. Though a few authors do take into account distortion 

(considering parametric distortion models [127–129]), the effect of drift distortion is 

generally not considered in experimental studies [130]. This situation was changed when 

Sutton et al [92-94] developed a new method for accurate measurement of deformations 

in an SEM at reduced length scales based on their previous work of bundle adjustment 

method [131] for distortion correction of a general imaging system for use with DIC. The 

paradigm shift that ensued led Li [132] in his work to show conclusively that higher 

magnification levels could be handled experimentally with the new approach, provided 

that a robust and accurate translation sequence was performed during calibration to 

increase the overall accuracy of the corrections. 

Although there have been many experimental studies and application of SEM-DIC, 

much of the previous work has focused on mechanical loading, with a limited number of 

recent studies focusing on thermal effects in nominally homogeneous material systems 

[116,132]. Since thermal reliability is a key issue for the development and design of 

advanced electronics and micron/nano scale packages, which are inherently 

heterogeneous in nature, the author applied the SEM-DIC measurement method to 

quantify the response of small portions of IC packages (areas from 50x50 μm2 to 10x10 

μm2) when subjected to thermal loading conditions from RT to ≈250 oC. Details 
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regarding the heterogeneous electronic packages specimens used in this study, along with 

a discussion of the patterning methods employed, are presented in Section II. Section III 

shows the experimental system setup. Section IV discusses the distortion correction 

procedure, with an extended discussion of the results after calibration. Results from 

several preliminary thermal tests on metallic sample are shown to verify the methodology. 

In Section V, thermal test results on IC package are highlighted, which shows the 

evolution of deformations around flaws and across the complex material constituents as 

the temperature increases up to ≈250 oC. 

 

2.2 Specimen Characteristics 

The present work is conducted on heterogeneous electronic packages containing 

silicon (Si), copper (Cu) bumps, a polymer rich Wafer Photo-Resist (WPR) layer, solder, 

backing material/composite substrate and/or First level interconnect (FLI). Figure 2.2 

shows the cross-sectional surface of one specimen. The regions enclosed by the blue line 

contain various materials that have different elastic moduli and thermal expansion 

coefficients. These regions are the AOI for this specimen. 

All specimens were cut by an IsoMet low speed precision sectioning diamond saw to 

20mm in length and 10mm in height to fit a specially designed aluminum holder. Several 

different polishing methods has been tried in order to get required surface roughness, 

including: 1) Use grinding/polishing equipment in the USC EM (Electron Microscopy) 

Center, including the MultiPrep™ System from Allied High Tech Products, Inc.; 2) Send 

the specimen to the North Carolina Nanocenter to use their FIB (Focused Ion Beam) and 

perform surface milling within the AIF (Analytical Instrumentation Facility at NCSU); 
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3) Send a sample to University of Michigan; 4) Apply metallographic standard polishing 

procedures - the top surface of the specimen (which corresponds to a transverse cross-

section of the integrated chip (IC) package) initially is mechanically polished with 

120~800 sand paper using deionized (DI) water. After completing the initial polish, a 

refined polish with abrasive powders such as AlO2 (5micro, 3micron) was performed. 

Finally, an abrasive mixture containing 20nm colloidal silica (liquid) was used to obtain a 

reasonably flat surface on the heterogeneous material system. Unfortunately, none of 

these approaches were successful. 

Sample Dimension 
  Y: 5-10mm 
  X: up to 50mm 
  Z: 0.5mm-4mm 

  

(50μm x 50 μm)
AOI

100μm

Figure 2.2: Specimen surface and area of interest of one specimen 
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200μm 

Figure 2.3: Cross sectional surface of one specimen 

  

50μm 

Figure 2.4: AFM and Edax scanning results 
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2.3 Surface Patterning Study 

Figure 2.3 is cross sectional surface of one specimen. According to the EDAX 

scanning results in Figure 2.4, the AOI included both a copper feature (bright area in 

SEM image) and a polymer based substrate (gray area). It is noted that results from AFM 

scanning of the as-polished chip profile shows the surface roughness is about 700 ~ 1000 

nm, with relatively steep spatial gradients near boundaries where high modulus 

differences occur (e.g., copper-polymer interfaces) that resulted in differential surface 

removal during polishing. These gradients invalidated the use of E-beam lithography for 

random patterning since the local profile gradients severely affected the quality of the 

pattern in the interface region where data is most needed. Figure 2.5 shows a trial E-beam 

lithography patterning result, where the pattern was not visible at all. Fortunately, 

Figure 2.5: E-beam lithography failed to pattern the area near the 
material boundary 
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Kammers and Daly [117,118] recently developed a novel self-assembled gold 

nanoparticle (AuNP) DIC patterning technique that eliminated the need for lithographic 

methods. By employing this method, the authors have shown that high quality, nanoscale 

patterns can be deposited on polished heterogeneous material systems such as shown in 

Figure 2.5.  

In their work, Kammers and Daly employed the method for patterning aluminum 

specimens. As they noted, the gold nanoparticles (AuNPs) are obtained through a 

reaction between HAuCL4 and Na3-citrate, with the particle size and distribution density 

controlled by the proportion of the mixture. In our experiments, one part of 38.8mM Na3-

citrate to 20 part of 1mM HAuCL4, was chosen to obtain AuNPs with the appropriate size 

and spatial distribution. AuNPs were produced following the procedure as follows: Gold 

(III) chloride trihydrate (HAuCl4·3H2O) and trisodium citrate dihydrate 

(C6H5Na3O7·2H2O) purchased from Sigma Aldrich were used to make stock solutions 

of 10 mM HAuCl4 and 38.8 mM Na3-citrate. To synthesize the AuNPs, 400 mL of 1mM 

HAuCl4 (diluted from 10mM stock solution) was added to a beaker and brought to a boil 

while stirred with a magnetic stirring rod. Between 4.5 and 30mL of 38.8 mM Na3-citrate 

was then added to the boiling solution to produce AuNPs with diameters of 10 to 100 nm. 

Dispersions of discrete gold nanoparticles via colloidal suspension in transparent media 

provide different colors. The diameter of gold nanoparticles determines the wavelengths 

of light absorbed. The colors in the bottles shown in Figure 2.6 illustrate this effect. After 

synthesis, the AuNPs were stored in dark glass bottles until use to protect them from UV 

rays that would reduce any remaining HAuCl4. 
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The AuNPs attach to the substrate surface by organosilane molecules that possess a 

pendant functional group with a strong affinity for gold. When substrates that possess 

reactive oxide/hydroxyl groups on their surface are immersed in a dilute organosilane 

solution, the silane molecules covalently bond to the substrate surface. The bound 

molecules are oriented so that the pendant functional group extends from the substrate 

surface, causing AuNPs to self-assemble onto the surface upon immersion into the AuNP 

solution. In this work, the (3-mercaptopropyl) methyldimethoxysilane (MPMDMS) 

(Sigma-Aldrich) were used. 

Different from the 99.99% Al substrates that Kammers and Daly used in their 

experiments, the IC package contains multiple materials with varying properties. 

Preliminary studies indicated that differential chemical reactions occurred when exposing 

the surface to the patterning mixture, resulting in poor spatial distribution of particles as 

unbonded silane molecules detached from the substrate surface and in some cases, 

corrosion/erosion of the underlying material occurred during the patterning process 

(Figure 2.7). To overcome this difficulty, the authors coated the surface with a thin layer 

of titanium. In this work, results are presented when using a 40nm titanium layer. It is 

Figure 2.6: Light colored mixture corresponds to larger gold particles 
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noted that a side benefit of the coating process was the minimization of “specimen 

charging”, which is induced by the presence of low electrical conductivity materials on 

the surface of the specimen when scanned by the electron beam during SEM imaging. 

 

Though described in detail in Reference [118], a brief description of the patterning 

process for this study is present. After lightly polishing the surface and applying the thin 

layer of titanium to the outer surface of the entire chip specimen, the surface region of 

interest on the IC chip is immersed in boiling deionized water to hydroxylate the 

specimen surface for pattern application. The substrate surface was silanized by soaking 

the surface in vials filled with one part MPMDMS to four parts methanol for 24 hours. 

After removal, the substrate surface was immediately immersed in 100mL methanol, and 

rinsed for 30 minutes using a magnetic stirrer. Following the methanol rinse, the surface 

was again rinsed with deionized water and then the IC specimen was placed in a vial for 

one day that contains the mixture 38.8mM Na3-citrate to 20 part of 1mM HAuCL4. 

Figure 2.8 shows the 10 KX magnification SEM image of sample surface after 

Figure 2.7: Corrosion/erosion of the underlying material 
occurred during the patterning process 
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completing the self-assembled gold nanoparticle patterning process. Even though the 

entire area is coated by titanium, the underlying heterogeneous nature of the surface is 

clearly visible in the SED SEM image. Here, area 1 is copper, area 2 is solder, area 3 is 

the WPR under-fill material (epoxy with filler content), area 4 is copper embedded in 

silicon, and area 5 is silicon. As shown in Figure 2.8, the entire surface has a nearly 

uniform, high contrast speckle distribution with particle size around 30~60nm, which is 

appropriate for using DIC to measure accurate local thermal deformations in the various 

material regions14. 

 

 
                                                           
14 Currently, we have successfully applied a speckle pattern with a minimum particle of 
5nm on a Si wafer specimen coated with 40 nm of titanium.  

 

Figure 2.8: Gold speckle pattern on heterogeneous material. Area 1 
is copper, Area 2 is solder, Area 3 is under-fill material (epoxy with 
filler content), Area 4 is copper embedded in silicon, and Area 5 is 
silicon 

1 2 3 

4 

5 
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2.4 Experiment Setup  

The SEM images shown previously were captured with a secondary electron 

detector to check underlying features of AOI in a Zeiss FEG SEM. In the thermal test, a 

Back Scatter Electron Detector (BSED) was used instead of secondary electron detector 

to get uniform contrast and less image distortion. SEM imaging parameters are selected 

based on overall quality of the image: (a) If contrast is sufficient, lower accelerating 

voltage is preferred to protect the IC chips from undesirable heating damage. In this work, 

the accelerating voltage is 5kV; (b) Image size is 1,024×768 pixels; (c) Scanning speed is 

6 in Zeiss SEM setting; (d) Line average mode has been used and the averaging number 

is 6; (f) Total image scan (frame time) to obtain the average of 6 images is 15.6sec; (g) 

Working distance is around 10mm. Here, longer working distance is used in order to 

reduce the potential for thermal damage to the BSED due to specimen heating.  

Based on the structure and features within each sample, as well as the gold particle 

size being applied, a magnification on the order of 5000× was used for the first test. In 

this SEM, 5000X corresponds to ≈ 56nm/pixel. Therefore, the regions being imaged are 

57×43 μm at 5000×. In future experiments using this specific speckle size, 20,000× may 

be preferred to increase the number of pixels sampling each speckle, because as noted in 

a recent publication [74], oversampling requires that each speckle be sampled by at least 

3x3 pixels for optimal accuracy. 

The heating plate INSTEC AHP202 were specially designed for thermal stability 

over the range 0oC to 250oC (which corresponds to 0 to 200oC at the imaged surface of 

the IC) with demonstrated ability to hold temperature within 0.1°C at 100°C, while 
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having a slim profile so that it can be used effectively in the Zeiss SEM system. A 

specially designed PID control strategy was implemented to limit temperature overshoot 

during incremental heating and thereby reduce the total time required to perform the 

experiment. In its updated form, the modified thermal stage rapidly approaches and then 

maintains the set temperature with variability of ±0.1°C. This level of thermal variability 

introduces strain oscillations in the aluminum specimen of 2.3×10−6 that are negligible in 

comparison to the effect of the relatively large drift distortion estimates obtained from 

two consecutive images. 

 
Figure 2.9: Heating plate and specimen configuration 

Thermal couple 
Specimen in the slot 

Heat insulating 
material 
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In order to hold the specimen vertically and heat more uniformly, an aluminum 

holder has been manufactured. The holder is a 28mm diameter round disk with a 5mm 

deep slot. Another reason the Al holder has been used is that the specimen is composed of 

relatively low electrical conductivity materials. The metal holder reduces the well-known 

“specimen charging” issue, which can cause severe imaging drift distortion problems 

during SEM scanning. Figure 2.9 shows images of the heating plate and specimen 

configuration. Temperature control was performed using the INSTEC STC200 control 

system [133]. A digital thermometer with K-Type thermocouple sensor has been 

modified to use in the test to measure the temperature of the specimen surface. To 

perform the control process outside the chamber, all wires from the heating plate are 

routed out of the SEM vacuum chamber through a sealed flange. 

Results from our studies show that the temperature a few millimeters above the 

thermal stage can exceed 130oC in an enclosed environment, which could damage the 

SEM imaging components. A combination of a Ceramic Fiber Insulation Blanket and a 

thin ceramic film was used to reduce the temperature to acceptable levels. We performed 

experiments to show that the method reduces temperature at 10mm above the thermal 

stage to 60oC. 

 

2.5 SEM Image Distortion Correction 

Due to the complexities of high-magnification SEM imaging systems that weaken 

the normal assumptions for CCD lens systems, the distortions in SEM images cannot be 

corrected by classical parametric distortion models; use of such simple models could 

result in inaccurate DIC displacement data. Sutton et al. [92- 94] were the first to 
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recognize that these distortions existed and need to be corrected prior to displacement and 

strain calculations. These distortions are characterized in two categories. One is spatial 

distortion, which is similar to the distortion present in optical lenses and can vary from 

test to test. The other is drift distortion, which varies over time and pixel drift is not 

constant within the image (see Figure 2.10). It can lead to significant errors in high spatial 

resolution experiments. In their work, spatial distortion removal is performed using a 

methodology that employs a series of in-plane rigid body motions and a generated 

warping function. Drift distortion removal is performed using multiple, time-spaced 

images to extract the time-varying relative displacement field throughout the experiment. 

 
Figure 2.10: Drift Distortion is non-linear and varies over time 

Figure 2.11: Schematic of experimental procedure for distortion removal and 
specimen heating in an SEM system. 
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Figure 2.11 shows the schematic of experimental procedure for distortion removal 

and specimen heating in an SEM system. In order to use VIC-2D 15 which includes 

experimental functionality to correct for both drift and geometric distortions that occur in 

SEM images, pairs of images have to be acquired in quick succession and the acquisition 

time for each image has to be recorded. This applies both to calibration images and 

images of the test object. There must not be any change in load or position of the object 

(whether calibration object or test object) between acquisition of the image pairs. Briefly, 

the procedure can be described as follows.  

1) First, obtain the best focus of the image by adjusting SEM parameter settings 

before the calibration, including working distance, aperture and stigmation. 

2) Second, without increasing temperature, all imaging parameters are set for the 

SEM system and initial images are acquired to ensure that the magnification and focus 

are adequate.  

3) Third, to perform the calibration process and determine the spatial distortion, in-

plane rigid body motions are applied. The specimen is translated in two orthogonal 

directions several times to complete the calibration phase. After each translation, a pair of 

images is acquired. For the two largest motions relative to the reference image, the 

motion should be recorded, as it will later have to be entered into the calibration dialog. 

The largest motions should be approximately 1/20 - 1/10 of the image size and a total of 

at least 5 motion steps in each of the two axis directions is adequate. 

4) Once the translations are complete, the thermal heating experiment is initiated. 

During the measurement phase, which is simply a continuation of the calibration phase, 

                                                           
15  Correlated Solutions Incorporated; 121 Dutchman Blvd; Irmo, SC; 29063.  
www.correlatedsolutions.com 

http://www.correlatedsolutions.com/


 

86 

the specimen is heated and undergoes thermal expansion. After each temperature increase 

has been completed and the temperature is stable, a pair of images is acquired that forms 

the image set for measurement purposes.  

5) Post-processing of images is performed using commercial 2D-DIC software VIC-

2D [52] with an a priori distortion correction subroutine to correct and then extract all 

displacement field data. 

Figure 2.12 shows both the uncorrected and corrected displacement field and strain 

field on an aluminum specimen under 5000x magnification. Figure 2.12 shows that the 

drift and spatial distortion correction procedures remove most of the imaging errors. After 

each increment of temperature, two images are acquired and are again used to estimate 

drift increments.  

  

 

U-field before Correction U-field after Correction 

ε
xx

-field before Correction ε
xx

-field after Correction 

Figure 2.12: Uncorrected and corrected displacement fields and strain fields on an 
aluminum specimen at 5000x magnification. 
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To determine the drift throughout the entire experiment, digital image correlation is 

performed on each image pair to extract the incremental drift. The measured incremental 

drift at each pixel location during the experiment is used to correct all images. 

It is noted that there are no changes in SEM parameter settings during an experiment, 

including working distance, aperture and stigmation after calibration. Our previous work 

shows that each change in a parameter leads to additional distortion errors in the final 

DIC results, even though the image itself looks “better” or sharper after an adjustment.  

During heating experiments, both the heating plate and the specimen experience 

thermal expansion. When assuming two-dimensional object motion during the 

experiment, care must be taken to ensure that the parasitic effects of out-of-plane motions 

experienced during the heating process do not introduce significant errors in the image-

based deformation measurements. In this work, the authors adjusted the position of the 

specimen via the SEM Z-stage according to the image focus as temperature increases 

(Figure 2.13), thereby approximately compensating for thermal expansion in the Z-

direction (Figure 2.14).  
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Figure 2.13: Z-stage adjustment with temperature increasing in Aluminum specimen test 
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Figure 2.14: Z-stage according to the image focus 

 

2.6 Image Post-processing in Vic-2D 

Post-processing of images is performed using commercial 2D-DIC software 

VIC2D [52] with an a priori distortion correction subroutine to correct and then extract 

all displacement and strain field data.   

First, appropriate subset size and subset spacing should be estimated and input in 

the ViC-2D before calibration and correlation. Session 7.1 illustrate the best practices for 

estimating subset size and subset spacing. 

2.6.1 Best Practices for Estimating Subset Size and Subset Spacing 

To obtain data throughout the region of interest, the reference image is decomposed 

into subsets and each subset is correlated with deformed images to obtain a discrete set of 

full-field displacement data. When performing optimal pattern matching between the 

undeformed and deformed images of a specimen, the most common approach is to select 

sub-regions on the undeformed specimen that contains several features.  The reason for 

selecting a small sub-region (oftentimes called a subset) is to ensure uniqueness in the 

matching process.  
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 Guidelines for selecting subset size are as follows. 

• When good contrast exists in the image, each subset should contain approximately 

6 features in each direction (3 light and 3 dark) 

o If each feature has 3 × 3 pixel sampling, then subsets contain at least 18 × 18 

pixels 

o If each feature as 7 × 7 pixel sampling, then subsets contain 42 × 42 pixels 

• When contrast is marginal, each subset should contain several more features (e.g. 

12 features in each direction)  to maintain accuracy in the matching process 

o If each feature is 3 × 3 pixels, then subsets would contain 36 × 36 pixels 

o If each feature has 7 × 7 pixel sampling, then subsets contain 84 × 84 pixels 

Regarding the spacing between subset centers, it is recommended that the subsets be 

separated by at least ½ the subset size. Thus, if an N × N pixel subset has its center at 

pixel location (P, Q), then the next subset to be correlated would be no closer than (P + 

Int(N/2), Q), where Int( ) is the integer part of N/2. 

2.6.2 Vic-2D Distortion Correction Procedure for SEM images 

Drift and spatial distortion corrections are performed using images from both the 

calibration and measurement phase of the experiment. Results from this process are used 

to define a warping function that can be applied to all images in the experiment.  

To use the correction in Vic-2D, a text file listing image file names and their 

acquisition times has to be created. This is a simple, comma separated file of strings and 

times, for example: 

"img_00.tif" , "00:00:00" 

"img_01.tif " , "00:01:40" 
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"img_02.tif " , "00:03:20" 

"img_03.tif " , "00:05:00" 

"img_04.tif " , "00:06:40" 

"img_05.tif " , "00:08:20" 

"img_06.tif " , "00:10:00" 

"img_07.tif " , "00:11:40" 

The image sequence can be imported into Vic-2D using Project->Speckle image 

list. First, the image sequence with the calibration images should be loaded. Select an 

AOI that fills the entire image, and choose an appropriate subset size for the pattern. Then, 

analyze the image data, and check “Process as SEM sequence” on the analysis dialog and 

enter the values for dwell and row time. After processing is complete, click Calibration-

>Distortion Correction. Select the two images with the largest motions, and enter the 

motions in the x and y directions and select the unit (mm/microns etc). After the 

distortion correction analysis, Vic-2D will now have a calibration. 

To check how well the distortion removal worked, analyze the data again. The 

analysis dialog will retain the settings for SEM analysis. Since there is now a calibration, 

Vic-2D will generate metric values for coordinates and displacements. When analyzing 

the calibration image sequence, all displacements should be uniform. After verifying the 

calibration, Vic-2D can now be used to analyze image sequences of the specimen (again, 

use Project->Speckle image list to import the file sequence and timing information) 

Drift distortion correction is performed using images from both the calibration 

and measurement phase of the experiment. Spatial distortion estimation is performed 

using only the drift-corrected images from the calibration phase. Results from this 
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process are used to define a warping function that can be applied to all images in the 

experiment (both calibration and measurement images). After all corrections are 

performed, a fully corrected set of displacement field data is obtained for both calibration 

and measurement phases of the experiment. These displacement fields are used to extract 

full-field strain data. 

2.6.3 Extract displacement and strain field 

After all corrections are performed, a fully corrected set of displacement field data is 

obtained for both calibration and measurement phases of the experiment. These 

displacement fields are used to extract full-field strain data.  

 

2.7 Thermal Validation Experiment: Metallic Specimen 

To verify the complete process works well and is effective for quantifying thermal 

deformations at high magnification, several different specimens, including aluminum, 

nickel and brass, have been chosen to compare the experimental result to literature values 

for the thermal expansion coefficient. Figure 2.15 shows the specimens with a high 

contrast random pattern on the surface. 

 

Figure 2.15: Left: Al specimen imaged at 5000x magnification. Right: Nickel specimen 
imaged at 2000x magnification 
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Figures 2.16~2.18 present the measured average thermal strain fields for ɛxx, ɛyy and 

ɛxy (blue dots), as well as estimated thermal strain using literature data (red line), during 

the heating process. The data in Table 2.1 shows that all experiments thermal expansion 

coefficients are in good agreement with existing literature values [134], which confirms 

the effectiveness of new patterning method and accuracy of the methodology for thermal 

measurements in an SEM. 
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Figure 2.16: Thermal strain vs temperature for Aluminum 

Figure 2.17: Thermal strain vs. temperature for Nickel 

Figure 2.18: Thermal strain vs. temperature for Brass 
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Table 2.1: Experiments thermal expansion coefficients comparing to literature values 

 

 

 

 

 

 

 

 

2.8 Thermal Test Results on Cross-section of an IC Package 

The validation test for a metallic specimen demonstrates that the complete process is 

effective for quantifying thermal deformations at high magnification, which gives us the 

confidence to perform the experiments on real IC packages. Figure 2.19 a~d shows one 

specimen and the location of area of interest used in these experiments. According to the 

EDX scanning results, (a) Areas 1 and 2, 5 and 6 in Figure 2.19 are substrate laminate 

materials (polymer based dielectric material), (b) Area 3 is a copper bump and (c) Area 4 

is a mixture of copper and polymer. Nonhomogeneous thermal deformation is expected in 

this heterogeneous specimen. Secondary electron detector image (Figure 2.19c) was used 

to detect the shape of each feature before the test. In the calibration and thermal test 

procedure, Back Scatter Electron Detector (BSED) was used instead of secondary 

electron detector to obtain uniform contrast and reduce image distortion (Figure 2.19 e-f). 

 

Literature 

value 
εxx  εyy 

 
(10−6/°C) (10−6/°C) (10−6/°C) 

Al 23.1  21.4 ± 0.7 24.3 ± 1.0 

Ni 13.0  10.9 ± 0.3 13.0 ± 0.8 

Brass 19 18.3 18.7 
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In order to eliminate quantify the effect of scanning direction on the measurements, 

the specimen has been tested twice; once in 0o degree arrangement and once when rotated 

by 90o. Figure 2.20 shows the measured strain field at high temperature for 0o and 90o 

  

    

(a) (b) 

(c) (d) 

(e) (f) 

Figure 2.19: (a) Optical microscopy image: Specimen in the Aluminum holder; (b) 
100X magnification SEM image using SE (secondary electron) detector; (c) AOI 
in the thermal test: 5000X magnification SEM image using SE detector; (d) same 
area of (c) at same magnification using BSE (back scattered electron) detector; (f) 
DIC strain field result using BSE image, the redline shows the strain field 
difference corresponding to the boundary of copper and polymer shown in (c)  

Area 1 Area 2 

Area 3 Area 4 

Area 5 Area 6 

AOI 



 

96 

scanning directions. Results clearly show that 1) the strain result is consistent regardless 

of the scanning direction, 2) the material is highly anisotropic, with the x and y directions 

having significantly different responses to thermal load and 3) the heterogeneous material 

component leads to strain variations due to different elastic moduli and different thermal 

expansion coefficients. 

 0o Scan Direction 90o Scan Direction 
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Figure 2.20: Strain field at high temperature for 0o and 90o scan directions 
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Figure 2.22: Strain vs temperature (°C) in each area for 90o scan direction 

Figure 2.21: Strain vs temperature (°C) in each area for 0o scan direction 

0o Scan Direction 

90o Scan Direction 
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Additional data is shown in Figure 2.21 and 2.22. Fig 2.21 shows the strain versus 

temperature from 25°C to 160°C for 0o scan direction. Vic 2D with distortion correction 

methodology has been used to calculate the strain fields εxx, εyy and εxy. The subset size in 

the analysis is 21x21 pixels, and the step size is 5 pixels. The temperature has been 

measured by thermal couple on the top surface of the specimen. The plots show that the 

thermal response of this specimen is heterogeneous and non-uniform.  

 1) The average εxx in each selected area is almost same, with thermal expansion 

coefficient about 14x10-6m/m K, regardless of the material or structure differences. 

 2) The vertical strain, εyy, exhibits a different response when compared to εxx. The 

copper regions, areas 3 and 4, have similar thermal expansion rates as measured in the x-

direction. The thermal expansion coefficient is still about 14x10-6m/m K, which is close 

to the value of pure copper, which is 16x10-6m/m K.  

 3) Areas 1 and 2 which are mainly polymer materials have much greater thermal 

expansion in the y-direction. The calculated thermal expansion coefficient is 64x10-6m/m 

K in the y-direction which is close to the literature value of epoxy, castings resins & 

compounds and underfill.  

 4) The value of εxy is always very small, indicating that the shear deformation is 

negligible in the regions being imaged. 

 5) We can detect the boundary of the change in specimen structure using the 

strain field difference. The red line shows the boundary of copper and polymer 

Fig 2.22 shows the thermal test results in the same region after rotating the specimen 

90o. The results are almost the same as the 0o configuration, which gives additional 

confidence in the experiment results.  
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2.9 High Magnification Imaging Results 

A smaller particle size, ranging from 12nm down to 3nm, is needed for 

magnifications from 25,000x to 100,000x. Nano-sized colloidal Au nanoparticles have 

been used to pattern the specimen in our work. Using Au3+ and corresponding reductants, 

in principle the current self-assembly patterning method can give us particle sizes down 

to 2.6 nm gold particles. Figure 2.23(a) shows the 50,000x magnification image of Si 

wafer specimen which is patterned by 10nm Au particles. The uniform random 

distribution pattern is good for correlation analysis. A 5nm Alkanethiol Stabilized Gold 

Nanoparticles patterning result is shown in Figure 2.23(b). The image quality is not as 

good as for the10 nm result (one possible reason is 5nm size is out of the resolution limit 

of the Zeiss SEM we used), but the particle size is clearly quite small, suggesting that the 

method can be used to make quantitative measurements using DIC methods for extremely 

small regions. It is noted that the blurred particle edges allowed for accurate interpolation 

of the imaging pattern, which could improve the accuracy of the measured displacement 

and/or strain fields.  

 

(a) 50,000 x (b) 1,000,000 x 

Figure 2.23: (a) 10nm particles at 50,000x; (b) 5nm particles at 1,000,000x 
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One issue we found at extremely high magnification is that images gradually blurred, 

even when there is no change in the SEM operational parameters. Figure 2.24 shows this 

phenomenon. Comparing images 2.24a and 2.24b, the working distance and Z-stage 

position are the same. However, the image is blurred after 12 minutes. Images 2.24c and 

2.24d show similar results. It is believed the observed distortions are caused by “charging 

effects” for the nominally non-conducting sample [135]. In general, “charging effects” 

are image distortions due to accumulation/build-up of static electric charge on the 

specimen surface. The increase in static charge influences the electron beam, alters the 

image formation process and distorts the resulting image. Previous work [135] has shown 

Figure 2.24: Gradual blurring of images caused by “charging effects” 
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that charging can cause a range of unusual effects, such as anomalous, heterogeneous 

contrast, which make it impossible to capture a uniform image of the specimen. In our 

work, the blurred image demonstrates that “charging” defocuses the image by changing 

the focus distance. Figure 2.25 shows this process graphically. In order to solve the issue, 

Z-stage position adjustment has been used to compensate the change. By translating the 

Z-stage a vertical distance of 8 microns (Figure 2.25c), we can recover a clear, well-

focused, high contrast image of the specimen (Figure 2.24c) which is similar to the 

original image (Figure 2.24a).  

From a quantitative standpoint, the measured strains also reflect this phenomenon. 

As shown in Figure 2.26, the strain values for both εxx and εyy gradually decrease with 

time from 0 min to 11 min. The decrease in strain values is caused by the change in the 

FOV size due to the effects of charging. Figure 2.25 graphically shows this effect. As 

shown in Fig. 2.25, defocusing of the specimen corresponds with an increase on FOV. 

This results in a reduction in the pixel size of same AOI, so that the image appears 

compressed with a negative strain value. After translation of the Z-stage, the image is re-

focused without changing any SEM operational parameters (e.g., working distance, 

magnification); the AOI pixel size returns to approximately the same size as before. The 

measured strain value calculated using VIC-2D [52] also returns to its original, 

upstretched value and approaches zero. (point c in Fig. 2.26, which represents the 

refocused position.) The strain value gradually decreases again with time, from 14min to 

25min.  
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2.10 Conclusion  

In summary, a simple and efficient approach is developed to study the heterogeneous 

nature of IC specimens at the micro-scale by measuring the non-uniform strain fields 

across the complex material constituents at temperatures from RT to ≈ 200oC using 

Figure 2.25: Image blurring mechanism and compensation method 
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Figure 2.26: Strain change vs time due to charging effects and 
corrective Z-stage adjustment. 
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images obtained with a Zeiss Ultraplus Thermal Field Emission SEM. For the first time, 

the authors present an experimental methodology using novel self-assembly techniques to 

randomly pattern the entire heterogeneous region on an IC package with a high contrast 

speckle pattern suitable for SEM imaging and digital image correlation. The minimum 

particle sizes in the experiments could reach 5nm, which give the ability to analysis the 

reduced length scale features being developed for the next generation IC packages. The 

experiments performed on baseline materials for temperatures in the range of 25°C to 

200°C demonstrate that the complete process is effective for quantifying the thermal 

coefficient of expansion for different materials. The experiments on IC cross-sections 

clearly show the heterogeneous nature of the specimen and the associated non-uniform 

strain fields that are measured across the complex material constituents. The results 

confirm that the experimental methods for thermally loading the specimen and 

compensating for out-of-plane motions are effective for quantifying the thermal 

expansion of all material components for temperatures in the range of 25°C to 200°C. 

Since this methodology has no inherent material or structure requirements, it can be used 

for a broad range of micro- and nano-scale studies which can benefit from advanced full-

field measurement capability for studies that include Microelectromechanical Systems 

(MEMS), Nanoelectromechanical (NEMS) devices, as well as other specialized nano-

mechanical systems that incorporate various nano-structures and even some biological 

materials that are not appreciably damaged by the SEM image process. 
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APPENDIX A 

Full-field results for axial strain, εxx, transverse strain, εyy, and shear strain, εxy, for 

0/90 and 45/45 specimens 

 Compression Side Tension Side 
εxx 

  
εyy 

  
εxy 

  
Figure A.1: Strain fields εxx, εyy, εxy for 0/90 specimen, when end displacement Δ 
is 10.08 mm and corresponding deflection w of specimen center is 19.16 mm 
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 Compression Side Tension Side 
εxx 

  
εyy 

  
εxy 

  
Figure A.2: Strain fields εxx, εyy, εxy for 0/90 when end displacement Δ is 19.97 
mm and corresponding deflection w of specimen center is 26.35mm 
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 Compression Side Tension Side 
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Figure A.3: Strain fields εxx, εyy, εxy for 45/45 specimens when end displacement 
Δ is 9.96 mm and corresponding deflection w of specimen center is 19.24 mm 
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 Compression Side Tension Side 
εxx 
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Figure A.4: Strain fields εxx, εyy, εxy for 45/45 specimen, when end displacement 
Δ is 20.17 mm and corresponding deflection w of specimen center is 26.67 mm 
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APPENDIX B 

Derivation of Small Deformation and Large Deformation Equations for Combined 

Bending-Compression Loading of Thin Beams 

B-1: Small Deformation Analysis 

Assuming small deformations, including both displacement and strain, the 

relationship between the beam's deflection and the applied moment can be written: 

 EI w”(x) = M(x) (B-1) 

According to the experiment setup, the total moment M(x) can be divided into two 

parts. One is the moment cause by load placed with an offset distance e. The other is the 

moment caused by the bending deflection. 

 ( ) ( )0 { ( )}M x M Pw x P e w x= + = +  (B-2) 

Then we can have the new equation, 

 EIw”(x) + Pw(x) = - Mo (B-3) 

which is a second order nonhomogeneous ordinary differential equation. The 

particular solution and general solution of w(x) can be expressed as: 

 ( ) 0
p

Mw x
P

= −  (B-4) 

 ( ) cos singw x A x B xλ λ= +  (B-5) 

where 

 
P
EI

λ =  (B-6)  
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The total deflection w(x) is 

 ( ) 0 cos sinMw x A x B x
P

λ λ= − + +  (B-7) 

At position x=0 and x=L, the w(x) equals to zero. Then we can solve the equation 

above to get coefficient A and B: 

 0 0 1 cos,
sin

M M LA B
P P L

λ
λ

− = =  
 

 (B-8) 

So the final expression of w(x) is 

 ( ) 1 cos( 1 cos sin )
sin

Lw x e x x
L
λλ λ

λ
−

= × − + +  (B-9) 

B-2: Large Deformation Analysis 

Taking the derivative of θ(s) defined in Fig. 5, we can get 

 
2

2 sind P dw P
ds EI ds EI
θ θ= − × = − ×  (B-10) 

where 

 21 ( ) cos
2

d P C
ds EI
θ θ= × +  (B-11) 

The constant C can be evaluated by the boundary condition at the loaded end s=0. 

 0
0

0

(0) 0, (0) , cos
s

Md P Pew
ds EI EI EI
θθ θ θ

=

= = = − × − = −  (B-12) 

So that 

 2
0

1 ( ) cos
2

Pe PC
EI EI

θ= − ×  (B-13) 

 
2

2
0

1 1cos ( ) cos
2 2

d P Pe P
ds EI EI EI
θ θ θ  = × + − × 

 
 (B-14) 
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In this paper, the e2 term is infinitesimal when the end displacement is over 0.1 mm, 

0.2% of total distance, and hence is neglected throughout the analysis process. According 

to the establishment of the coordinate system, d dsθ  should be negative value from 

0s = to s L= . Thus 

 0
2 cos cosd P

ds EI
θ θ θ= − × −  (B-15) 

The value of θ0 cannot be found directly from this equation. However, if we assume 

that the neutral surface of beam is inextensible, then 

 
2

0 0

2 1 2 
cos cos

LP PLds d
EI EI

θ
θ θ

= − =
−∫ ∫  (B-16) 

The equation could be transformed using an elliptical integral to give; 

 ( )2 2 2
01 cos 2 sin 1 cos sinkθ β θ β− = = − ×  (B-17) 

then 

 
( ) ( )2 2 2

0

1 1 1
cos cos 2 cos1 2 sin 1 2 kk kθ θ ββ

= =
− − − −

 (B-18) 

and 

 ( )2 2 2(cos ) 1 2 sin 4 sin cosd d k k dθ β β β β= − = −  (B-19) 

 2 4 4 2 2sin 1 cos 4 sin 4 sink kθ θ β β= − = − +  (B-20) 

then 

 
2 2

(cos ) 2 cos
sin 1 sin

d k dd
k

θ β βθ
θ β

= − =
−

 (B-21) 

And since we have 
0

1
cos cosθ θ−

 from previous equation, 
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2

0 1

2 2
0 0

2 1 2 
cos cos 1 sin

lP ds d d
EI k

βθ

θ β

θ β
θ θ β

= − = −
− −

∫ ∫ ∫  (B-22) 

The lower limit of integral β1 can be evaluated by the condition at the loaded end 

s=0. 

 1 0
1

0

1 cossin
1 cos 2

θ πβ
θ

− −
= =

−
 (B-23) 

The upper limit of integral β2 can be evaluated by the condition at the loaded end s=l. 
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2

0
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− −
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−
 (B-24) 

Particularly, at position l=L/2, the w(s) reaches the maximum value, and θ=0, β2=0. 
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∫ ∫  (B-25) 

The right part is a complete elliptic integral of the first kind. In the notation of 

Jahnke and Emde [59], 
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The load P can be represent in terms of F(k) 

 [ ]2

2

4 ( )F k EI
P

L
=  (B-27) 

The next step is to represent the deflection w in terms of θ and an elliptic integral. 

Since 

 sindw d dw
d ds ds

θ θ
θ

= =  (B-28) 

And since we have dθ/ds from previous equation 
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so that 
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Particularly, at position l=L/2, the w reaches the maximum value, and θ=0 

 0 0
2 1 cos 1 cos

2 ( )max
EI Lw
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 (B-31) 

B-3. Beam Shape for Large Deformation 

The shape of the beam can be defined by knowing how the axial displacement, Δ, is 

related to the spatial position of points on the beam, including their arc length location 

and their lateral displacement, w. Since we have an expression for dw in Eq (B-30), it can 

be rewritten here as follows; 
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 (B-32) 

with 

 cos sindx d
ds ds

ωθ θ= =  (B-33) 

Then, dx  and ds  can be rewritten in terms of θ  
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The axial displacement Δ expression can be written as follows; 
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where H(k) is a complete elliptic integral of the second kind and is written as 

follows;  
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where P is given by Eq (B-27). 
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APPENDIX C 

Strain Estimates and Variability Using 3D-DIC Measurements 

Estimates for strain errors are a direct function of errors in the experimental 

displacement data and the method used to extract the strain estimates. Assuming a local 

planar fit to the initial specimen surface, in this work a two-dimensional quadratic 

function with six independent constants is used locally to fit each component of the 

measured displacement field. Then, least square minimization is performed; 

E  =  i ∑j [u(xi,yj) – (a +bxi +cyj +dxiyj +exi
2 + f yi

2) ]2 

Typically, the summation is over NxN points where experimental data was obtained, 

where N is an odd number. Once the optimal parameters are obtained, the function is 

differentiated at the central point in the array to define the local strain using a standard 

strain metric.  

Since we have estimates for the variability in the measured displacement, and the 

optimization process results in a linear function for the coefficients, then it is straight-

forward to determine the variability in the coefficients of the function, variability in the 

derivatives of the function and hence variability in the strain. Results in our case indicate 

that the maximum variability in strain (near edges of image) is on the order of +/-500 

microstrain.  
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Confirmation of the theoretical predictions described in the previous paragraph is 

given in Figure C.1. To obtain this data, a total of 10 image pairs were acquired of the 

unloaded specimen after completing the 3D system calibration process; a typical contour 

plot for the axial strain field is shown on the left side of Figure C.1. By analyzing the data 

for all ten sets of images using Vic-3D software, results indicate that the maximum and 

minimum strains are +/-500 microstrain, with a standard deviation in each strain 

component that is less than 150 microstrain.  
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Figure C.1: Measured axial strain field with strain variability metrics across entire field of view  
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